
Design and Evaluation of a Grid Computing Based
Architecture for Integrating Heterogeneous IDSs

Paulo F. Silva, Carlos B. Westphall, Carla M. Westphall
Network and Management Laboratory

Post-Graduate Program in Computer Science
Federal University of Santa Catarina, Florianópolis, Brazil

E-mail: {paulo, westphal, carla}@lrg.ufsc.br

Marcos Dias de Assunção
Grid Computing and Distributed Systems Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Victoria, Australia

E-mail: marcosd@csse.unimelb.edu.au

Abstract—Intrusion Detection Systems (IDSs) have been sub-
stantially improved in recent past. However, network attacks
have become more sophisticated and increasingly complex: many
of current attacks are coordinated and originated in multiple
networks. To detect these attacks, IDSs need to obtain informa-
tion on network events from multiple networks or administrative
domains. This work demonstrates that a Distributed IDS (DIDS)
can be composed of existing IDSs, improving the detection of
misuses in a multiple network environment. We use a Grid
middleware for creating a service-based intrusion detection Grid.
We demonstrate through experimental results that the proposed
DIDS allows the integration of heterogeneous existing IDSs and
improves the detection of attacks by exploring the synergy
between existing IDSs.

Index Terms—Distributed Intrusion Detection Systems, Grid
Services, Globus, IDS Composition.

I. INTRODUCTION

Distributed Intrusion Detection Systems (DIDSs) started to
emerge in early 90s due to the need to correlate information
from multiple network domains in order to detect distributed
attacks [1]. Since then, research on DIDSs has received much
interest, mainly because centralised and monolithic Intrusion
Detection Systems (IDSs) are not able to provide enough infor-
mation to prevent attacks that are coordinated and originated
in multiple networks. The research community and industry
have proposed varying solutions for integrating heterogeneous
IDSs [2]–[5]. The Intrusion Detection Working Group IDWG
highlights several reasons and benefits of integrating IDSs [6].

Although a DIDS can allow the detection of distributed
attacks, it requires a high degree of coordination among its
components and can be complex and difficult to maintain.
Moreover, the use of multiple tools for intrusion detection
or the integration of existing IDSs are neither straightforward
nor easy tasks; they demand the design and implementation
of protocols for communication, data transfer, among others.
In this case, Grid computing is appealing as it enables the
development of distributed applications and coordination in a
distributed environment [7].

Grid computing aims to enable coordinated resource shar-
ing within dynamic groups of individuals and/or physical
organisations. Grid middleware enables for secure access,
management and allocation of remote resources; and provides
resource information services and protocols and mechanisms

for data transfer [8]. Grid systems, driven by Service Oriented
Architectures (SOAs), have been structured as networks of
interoperating services that communicate with one another via
standard interfaces [9]. In this scenario, resources and existing
applications can be encapsulated and provided as services to
end users. We envision that IDSs can also be encapsulated and
delivered as services to users.

In our previous work, we proposed an architecture based
on Grid computing technology for the composition of a
DIDS, through the encapsulation of existing IDSs as Grid
services [10]. We have demonstrated the usefulness of this
integration through simulation using GridSim Toolkit [11].
Here, we describe the implementation of our architecture
using Globus Toolkit 4.0.1 [12], complying with the WSRF
specifications [9]. The proposed system, termed Distributed
Intrusion Detection System on Grid (DIDSoG) enables het-
erogeneous IDSs to work together in a cooperative way. We
design a common interface to integrate IDSs to DIDSoG.
Each IDS is viewed as a resource accessed through WSRF
interfaces. DIDSoG uses WSRF compliant services offered by
Globus including: communication (i.e. XML and SOAP), Grid
Security Infrastructure (GSI) and Monitoring and Discovery
Service (WS-MDS).

The rest of this paper is organised as follows. Section II
presents related work. Section III describes the proposed sys-
tem. The development of DIDSoG is discussed in Section IV.
We present and discuss experimental results in Section V.
Section VI concludes the paper and presents the future work.

II. RELATED WORK

Sterne et al. present a hierarchical architecture for a DIDS
in which information is collected, aggregated, correlated and
analysed as it is sent up in the hierarchy [13]. Components in
the same level of the hierarchy cooperate with one another.
Similarly, the integration proposed by DIDSoG follows a
hierarchical architecture. An IDS integrated to DIDSoG offers
functionalities at a given level of the hierarchy and requests
functions from IDSs at other levels. However, DIDSoG differs
from the work by Sterne et al. [13] by enabling the integration
of heterogeneous IDSs.

Leu et al. [2] propose the use of Globus Toolkit for intrusion
detection focusing on Denial of Service (DoS) and Distributed

Denial of Service (DDoS) attacks. Leu et al. [3] introduce
Grid-based IDS named Fault-tolerant Grid Intrusion Detec-
tion System (FGIDS), which explores a Grid’s dynamic and
abundant computing resources to detect malicious behaviours
from a massive number of network packets.

Leu et al. [2], [3] point out that IDSs developed upon Grid
platforms are less vulnerable to attacks because of the distribu-
tion provided for by such platforms. They have demonstrated
through experimental results the advantages on performance
and dependability of applying computational Grids to IDSs.
Our work also proposes the development of a DIDS upon a
Grid platform. However, the resulting DIDS integrates het-
erogeneous IDSs whereas the DIDSs presented by Leu et al.
[4],[5] do not consider the integration of heterogeneous IDSs.

Grid-specific Host-based IDS (GHIDS), a specific IDS for
Grids, is presented by Feng et al. [4]. GHIDS verifies the
kernel of the operating system and generates reports relating
information of the host with information of the Grid. The
experiments on GHIDS were based on Globus 4.0. DIDSoG,
on the other hand, does not aim at detecting intrusions in
a Grid environment. In contrast, DIDSoG uses the Grid to
compose a DIDS by integrating specific IDSs. The resulting
DIDS could eventually be used to identify attacks in a Grid
environment through the integration of Grid IDSs.

Multi-Agent Approach to Intrusion Detection for Grid
(MAIDG) is presented by Zhu et al. [5]. MAIDG uses Globus
to dynamically integrate intrusion detection resources to the
Grid. The detection resources publish, locate and transfer data
using Globus tools. MAIDG emphasises the benefits of Globus
in the integration of intrusion detection resources. The benefits
are on improvement and facility on communication, security
and resource discovery.

Similarly to MAIDG, DIDSoG dynamically integrates in-
trusion detection resources using a Grid computing mid-
dleware. The difference between the two systems relies on
the relationship between the resources and the target of the
intrusion detection. DIDSoG uses a service-oriented approach
(i.e. WSRF and Web Services), while MAIDG uses a multi-
agent system approach. While the target of intrusion detection
of MAIDG is specifically the Grid, DIDSoG has any kind
of environment as a target, including Grids. The target of
intrusion detection of DIDSoG is defined by the characteristics
of the integrated intrusion detection resources.

III. THE DIDSOG ARCHITECTURE

DIDSoG presents a hierarchy of intrusion detection ser-
vices; this hierarchy is organised in a two-dimensional vec-
tor defined by “Scope:Complexity”. The IDSs composing
DIDSoG can be organised in different levels of scope and
complexity, depending on its functionalities, the topology of
the target environment and expected results.

Figure 1 presents how DIDSoG collects data from hosts,
networks or applications. Initially, a Native Sensor collects
the data and stores it in a database. The Sensor Gateway,
specifically developed to communicate with the database of
the Native Sensor, carries out the first access to the DIDSoG.

Native
Sensor

Gateway
Sensor

Sensor
Level 1:1

D
a
ta

b
a
se

DIDSoG

Fig. 1. DIDSoG data gathering.

DIDSoG Resources
(Sensors, Analysers, etc)

Analysers
Level 1:1

Aggreg.
Correlation
Level 2:1

Aggreg.
Correlation
Level 3:1

Analysers
Level 1:N

Analysers
Level 2:1

Analysers
Level 3:1

Analysers
Level 2:N

Analysers
Level 3:NCounter

Measure
Level 1

Counter
Measure
Level 2

Counter
Measure
Level 3

Monitor
Level 1

Monitor
Level 2

Monitor
Level 3

Fig. 2. DIDSoG data flow.

Sensor Gateway sends the collected data to a Sensor resource.
The Sensor resource sends the data to other DIDSoG resources
according to its configuration. The Sensor resource is the first
DIDSoG resource in which data passes through, thus it is the
entry point for the data in DIDSoG.

Once collected, the data flows according to the way re-
sources were configured in DIDSoG. Figure 2 presents a
DIDSoG composed of different intrusion detection services
provided by different IDSs; these services can include: data
aggregation, data correlation, analysis, intrusion response and
management services. The figure also illustrates the informa-
tion flow and the relationship between the levels of scope and
complexity.

Figure 2 shows that an Analyser that acts on data from
a single host (level 1:1) receives information from sensor
resources. An Aggregation resource in level 2:1 can receive
information from sensor resources or from other resources
that have already processed data, such as Analysers and other
Aggregators. The Aggregation resource in level 3:1 receives
and aggregates data from several other resources that have
already processed the data.

The Analyser in the first scope and complexity level sends
the information to more complex Analysers in the next levels
of complexity (level 1:N). When an Analyser detects an
intrusion, it communicates with Counter-Measure and Moni-
toring services registered to its scope. An Analyser can invoke
a Counter-Measure service to handle a detected attack, or
inform a Monitoring service about the ongoing attack, so the
administrator can act accordingly.

Aggregation and Correlation resources in the second scope
receive information from Sensors from different sources.
These resources process the received information and send
it to the Analysers registered to the first level of complexity
in the second scope (level 2:1). The information is also sent
to the aggregation and correlation resources registered to the

G
ri
d

In
fo

rm
a
tio

n
S

e
rv

ic
e
s

DIDSoG
Resources

DIDSoG
Resources

Native IDS

DIDSoG Resource

Connector

Descriptor
(d)

(b)

(a)

(c)

Base

Fig. 3. The architecture of a DIDSoG resource.

first level of complexity in the next scope (level 3:1).
The Analyser in the second scope acts similarly to the

Analyser in the first scope by directing the information to a
more complex Analyser and putting the Counter-Measure and
Monitoring resources in action in case attacks are detected.
Aggregation and correlation resources in the third scope re-
ceive information from different sources. These resources then
carry out the aggregation and correlation of the information
from different domains and send the resulting information to
the Analysers in the first level of complexity in the third
scope (level 3:1). The information could also be sent to the
Aggregation resource in the next scope in case there resources
registered to that level. The Analysers in the third scope act
similarly to the Analysers in the first and second scopes, except
that in the third scope they act on information from multiple
domains. The functionalities of the registered resources in
each of the scope and complexity levels can vary from one
environment to another, but DIDSoG allows the development
of “N” levels of scope and complexity.

Figure 3 presents the architecture of a resource participating
in the DIDSoG. A DIDSoG resource is composed of four
components: Native IDS, Descriptor, Base and Connector.
A Native IDS corresponds to the IDS being integrated to
DIDSoG. This component processes the received data and
generates new data to be sent to other DIDSoG resources.
The Native IDS component can be any tool that processes
information related to intrusion detection (e.g. analysis, data
gathering, data aggregation, data correlation, intrusion re-
sponse or management tools).

The Descriptor is responsible for the information that iden-
tifies a resource and its respective destination resources in
DIDSoG. The Base component is responsible for the com-
munication of a resource with other resources of DIDSoG
and with the Grid Information Service (GIS). This component
registers the resource and queries other resources in the
GIS. The Connector component is the link between Base
and Native IDS. The information that Base receives from
source resources is passed to the Connector component. The
Connector performs the necessary changes in the data, so it
can be interpreted by Native IDS, and sends this data to Native
IDS for processing. Connector has also the responsibility for
collecting the information processed by Native IDS and for
making the necessary changes, so that the information can pass
through the DIDSoG again. After these changes, Connector
sends the information to Base, which in turn sends it to the
destination resources in accordance with the specifications of

DIDSoGService

DIDSoGDescriptor

DIDSoGResource

DIDSoGResourceHome

Generic_Connector

Fig. 4. Main classes of the DIDSoG services.

the Descriptor component.
When a resource is initialised, it (a) registers itself to a

GIS thus other participating resources can query the services
provided. After the registration, the resource is able to receive
data from other resources. A given resource of DIDSoG
interacts with other resources by (b) receiving and processing
data; (c) querying the GIS about other resources available; and
(d) sending the results to other resources, therefore forming a
Grid of intrusion detection resources.

IV. IMPLEMENTATION

The proposed system has been implemented using Globus
Toolkit 4.0.1 [12]. A DIDSoG resource is made available
to DIDSoG as a Grid Service implemented on a WSRF
platform [9]. DIDSoG system enables the implementation
of DIDSoG resources. The main classes of the system are
presented in Figure 4.

The classes DIDSoGService, DIDSoGResource and DID-
SoGResourceHome implement the necessary requirements for
the execution of a WSRF compliant Grid Service. The
DIDSoGService class implements the Base component. The
DIDSoGService class is related to DIDSoGDescriptor, which
implements the Descriptor component. The Descriptor is read
by the DIDSoGDescriptor class from a XML document that
contains the Descriptor specification. DIDSoGService also
relates with the abstract class Generic Connector.

A Connector component must be developed for each DID-
SoG resource. The Connector component is enabled by cre-
ating a class that implements Generic Connector. The imple-
mented class has methods to receive and send data to the Base
component (i.e. DIDSoGService). The Connector component
must be implemented in a way that interacts with the Native
IDS integrated to the DIDSoG.

V. EXPERIMENTAL RESULTS

In order to evaluate DIDSoG, we create resources for data
gathering, analysis, aggregation/correlation and response. For
each resource, we simulate the processing tasks of a Native
IDS. For each Native IDS we develop a class that implements
Generic Connector. This class corresponds to the Connector
component of the Native IDS and aims at integrating it to the
DIDSoG. After the development of the DIDSoG resources, we
deploy them in the Web Services container provided by Globus
Toolkit. The Descriptors are defined in XML format for each
DIDSoG resource. The DIDSoG resources are distributed in
different hosts and the container is executed in each host.

With the DIDSoG resources available as Grid Services, a
publication of each Grid Service in the Web Service Moni-
toring and Discovery Service (WS-MDS) is carried out. From

Analyser 1
Level 1:1

Aggreg.
Corr. 1

Level 2:1

Analyser 2
Level 2:1

Analyser 3
Level 2:2

KDD

KDD

KDDAg

KDDAg

IDMEF

IDMEF

IDMEF

KDD

Counter-
Measure 1

Level 1

Counter-
Measure 2

Level 2Sensor 2
Level 1:1

Gateway
Sensor 1

Gateway
Sensor 2

Sensor 1
Level 1:1

K
D

D

K
D

D

Fig. 5. Execution flow for the experimental scenario.

 0

 2

 4

 6

 8

 10

 12

 14

 1000 2000 3000 4000

Ti
m

e
(s

ec
on

ds
)

Number of records

(a) Detection and Response Mean Times
per Number of Records

CM1 Detection
CM1 Response
CM2 Detection

CM2 Response

 0.68
 0.69

 0.7
 0.71
 0.72
 0.73
 0.74

 2000 4000 6000 8000

Ti
m

e
(s

ec
on

ds
)

Number of records

(b) Mean Processing Time
per Number of Records

Mean time
per record

Fig. 6. Mean times per number of records.

that moment onwards, all the DIDSoG resources are available
for communication and execution.

For the data gathering purposes, we use a KDD database
[14] obtained from a simulation of a large number of intrusions
to a military network environment. Two Gateway sensors are
developed, capable of reading information in the KDD format.
We assign one KDD database to each Gateway sensor.

We perform two experiments to demonstrate the behaviour
of DIDSoG. The first experiment analyses the behaviour of
DIDSoG with different amounts of data. The second exper-
iment analyses DIDSoG in different hierarchical scenarios.
Figure 5 presents the scenario for the first experiment, ac-
cording to specification of the descriptors of each resource. In
this scenario, two Gateway Sensors collect KDD data from a
database and send it to other. We perform the experiment with
1000, 2000, 3000 and 4000 records for each Gateway Sensor.
Each Gateway Sensor randomly selects records from the
database and and sends them to the next DIDSoG component.

Figure 6(a) presents the results of both the detection and
response mean times for each counter-measure component
(i.e. Conter-Measure 1 (CM1) and Counter-Measure 2 (CM2)).
We observe that detection and response mean times are little
impacted by the different amounts of data collected. The
response time on CM1 and CM2 presents a small reduction
when the amount of data increases. The detection time on CM1
and CM2 also presents a small reduction with 3000 and 4000

Analyser 1
Level 2:1

Aggreg.
Corr. 1

Level 2:1

Analyser 2
Level 2:1

Analyser 3
Level 2:1

Counter-
Measure 1
Level 2:1

Counter-
Measure 2
Level 2:1

Sensor 2
Level 1:1

G
a

te
w

a
y

S
e

n
s

o
r

1

G
a

te
w

a
y

S
e

n
s

o
r

2

Sensor 1
Level 1:1

KDD

KDD

Analyser 1
Level 2:1

Aggreg.
Corr. 1

Level 2:1

Analyser 2
Level 2:2

Analyser 3
Level 2:3

Counter-
Measure 1
Level 2:1

Counter-
Measure 2
Level 2:1

Sensor 2
Level 1:1

G
a

te
w

a
y

S
e

n
s

o
r

1

G
a

te
w

a
y

S
e

n
s

o
r

2

Sensor 1
Level 1:1

KDD

KDD

Analyser 1
Level 2:1

Aggreg.
Corr. 1

Level 2:1

Analyser 2
Level 2:2

Analyser 3
Level 2:3

Counter-
Measure 1
Level 2:1

Counter-
Measure 2
Level 2:2

Sensor 2
Level 1:1

G
a

te
w

a
y

S
e

n
s

o
r

1

G
a

te
w

a
y

S
e

n
s

o
r

2

Sensor 1
Level 1:1

KDD

KDD

Case 1 Case 3Case 2

Fig. 7. The three considered hierarchical scenarios.

records. We notice that the detection time on CM2 is larger
than all other times. It occurs because this time is influenced
by the aggregation component. This component performs
the aggregation from received records, which increases the
detection time on CM2. The average processing time of a
record, with different numbers of records, is presented in
Figure 6(b). We observe a decrease in the time to process
a record when the number of records increases. With 8000
records, the DIDSoG registers the shortest mean time.

For the second experiment we consider three scenarios.
Figure 7 presents these scenarios, according to specification
of the descriptors of each resource. These experiments aim at
evaluating the impact of the hierarchical structure in several
parts of DIDSoG in different scenarios. Case 1 is a scenario
with a low hierarchy where the data is sent directly to the
target component, without intermediate components. In Case
2, we consider a hierarchical structure between the Aggregator
and the Analysers. In this scenario, the Aggregator sends data
only to Analyser 1. Analyser 1 forwards the data to Analyser
2 and Analyser 2 in turn forwards data to Analyser 3. In Case
3 there is also a hierarchical structure between the Counter-
Measure components. In this case, all Analysers send data
only to Counter-Measure 1, which forwards data to Counter-
Measure 2.

The components Gateway Sensor 1 and 2 are fed with
1000 KDD records each, and configured to select records
randomly from the databases. We evaluate the detection and re-
sponse mean times on components Counter-Measure 1 (CM1)
and Counter-Measure 2 (CM2) in each scenario. Figure 8(a)
presents the detection and response average times obtained
in each scenario. Each alert on all scenarios is sent to all
Counter-Measure components. The detect time is the same
on Counter-Measure 1 and 2 and the graph shows only a
line about detection time. Case 2 presents the best detection
time while Case 1 the worst. Case 1 has the worst detection
time because all analysers are connected directly with the
aggregator component, impacting into its performance and
influencing on the detection time of all analysers. Case 1
registers the best response time, while Case 3 registers the
worst. All response times were longer in CM2 than in CM1.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8

Case 1 Case 2 Case 3

Ti
m

e
(s

ec
on

ds
)

(a) Detection and Response Mean Times
per Hierarchical Scenario

Time per Record

 0
 2
 4
 6
 8

 10
 12
 14
 16

Case 1 Case 2 Case 3

Ti
m

e
(s

ec
on

ds
)

(b) Mean Processing Time
per Hierarchical Scenario

Detection
CM1 Response
CM2 Response

Fig. 8. Mean times of the hierarchical scenarios.

Moreover, this difference increases in Case 3, mainly because
in this case, CM1 needs to forward alerts to CM2, and only
later CM2 generates the responses. Case 2 presents an average
time between the best and the worst time, but it has also the
best detection time. Case 2 presents the best final time between
collect time and response time.

According with Figure 8(b), Case 2 also presents the best
average time needed to process a record. Case 3 registers the
longest time required to process a record. It is also true for the
response time. A hierarchical structure for Counter-Measure
components therefore has not been very appealing. However,
according with results presented in Figure 8, a hierarchical
structure between aggregation and analysers has advantages.
The experiments demonstrate the behaviour of the hierarchical
structure in several parts of DIDSoG. The resources carry out
tasks (data collection, aggregation, analysis and generation of
alerts) in an integrated manner.

VI. CONCLUSIONS

The integration of heterogeneous IDSs is important. How-
ever, the incompatibility and diversity of IDS solutions make
such integration extremely difficult. This work proposes a
middleware for the composition of DIDS by integrating exist-
ing IDSs on a computational Grid platform (DIDSoG). IDSs
in DIDSoG are encapsulated as Grid services for intrusion
detection. A computational Grid platform is used for the
integration by providing the basic requirements for commu-
nication, resource discovery, and security mechanisms.

Security, communication and resource discovery features are
provided by Globus Toolkit. The authenticity of the DIDSoG
resources, the confidentiality and the integrity of data rely on
the Public Key Infrastructure provided by the Globus GSI.
DIDSoG resources use WS-MDS to publish and locate the
other DIDSoG resources.

Based on the components of the architecture, several re-
sources are modelled forming a Grid of intrusion detection.
The test demonstrate the usefulness of the proposed system.
Data from the sensor resources has been read and used to feed

other resources of DIDSoG. Resources providing different
intrusion detection services have been integrated.

Various resources have been modelled according to the
architecture components. The components of DIDSoG have
served as basis for the integration of the resources presented
in the tests. During the tests, the different IDSs cooperate with
one another in a distributed manner; however, in a coordinated
way with an integrated view of the events, having, therefore,
the capability to detect distributed attacks. This capability
demonstrates that the IDSs integrated have resulted in a DIDS.

DIDSoG presents new research opportunities that we would
like to pursue, including: the use of services of the Grid to
manage data of the DIDSoG (Grid-FTP); enable distribution
of task processing that require a great deal of computing
resources (e.g. analysis and correlation activities); enable spec-
ification of intrusion detection policies for different environ-
ments; and investigate economic-based incentive mechanisms
for the integration of IDSs.

ACKNOWLEDGMENTS

We thank Kyong Hoon Kim from the University of Mel-
bourne for sharing his thoughts on the topic. Marcos’ PhD
research is partially supported by National ICT Australia
(NICTA).

REFERENCES

[1] S. R. Snapp et al., “DIDS: Motivation, architecture and an early
prototype,” in Proceedings of the 15 IEEE NCSC, Baltimore, October
1992.

[2] F. Leu et al., “Integrating Grid with intrusion detection,” in Proceedings
of the 19th IEEE AINA05, March 2005.

[3] F. Leu, M. Li, and J. Lin, “Intrusion detection based on Grid,” in
Proceedings of the Int. Multi-Conference on Computing in the Global
Information Technology (ICCGI 2006), 2006.

[4] G. Feng et al., “GHIDS: Defending computational grids against misusing
of shared resources,” in Proceedings of IEEE APSCC ’06, China, 2006.

[5] P. Zhu et al., “A new flexible multi-agent approach to intrusion detection
for Grid,” in Proceedings of the 15th ICMLC2006, August 2006.

[6] M. Wood, “Intrusion detection message exchange requirements,”
October 2002. [Online]. Available: www.ietf.org/internet-drafts

[7] I. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure, I. Foster and C. Kesselman, Eds. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1999.

[8] I. Foster et al., “Open Grid services infrastructure to WS-Resource
Framework,” ogsi to wsrf 1.0.pdf, May 2004. [Online]. Available:
www. globus.org/wsrf/specs/

[9] ——, “The WS-Resource Framework,” ws-wsrf.pdf, May 2004.
[Online]. Available: www.globus.org/wsrf/specs/

[10] P. Silva et al., “Composition of a DIDS by integrating heterogeneous
IDSs on Grids,” in Proceedings of the 4th Int. Workshop on Middleware
for Grid Computing (MGC 2006), Melbourne, Australia, November
2006.

[11] R. Buyya and M. Murshed, “GridSim: A toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,” Concurrency and Computation: Practice and Experience
(CPE), vol. 14, no. 13-15, p. 11751220, November-December 2002.
[Online]. Available: http://www.gridbus.org/papers/gridsim.pdf

[12] I. Foster, “A globus toolkit primer,” August 2005. [Online]. Available:
Available at www.globus.org/toolkit/docs/4.0/key

[13] D. Sterne et al., “A general cooperative intrusion detection architecture
for MANETs,” in Proceedings of the 3rd IEEE IWIA05, March 2005.

[14] “The 15th international conference on KDD, 1999.” [Online]. Available:
kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

