
Leveraging Attention Scarcity to Improve the
Overall User Experience of Cloud Services

Marco A. S. Netto, Marcos D. Assunção, Silvia Bianchi
IBM Research

Sao Paulo, Brazil

Abstract—Applications for mobile devices are increasingly
relying on Cloud services to provide content and offload data
processing tasks. Traditionally, web-based systems have been
optimised to improve response time. Touch sensitive screens
and the various sensors of mobile devices allow for better
instrumentation, enabling providers to obtain more honest signals
on how users utilise a service and learn about their behaviours.
This work introduces an architecture that explores honest signals
to determine a few user behaviours, e.g. the tendency to perform
multiple tasks at a time, change focus, and expect fast response
from a service. The architecture relies on a novel resource
management strategy that considers such behaviours to prioritise
service requests from users who demand fast response from
a service. By comparing the proposed strategy with one that
does not consider the signals, we show that the experience of
users who demand faster response time can be improved without
degrading the quality of service of those who often perform
multiple activities. The proposed strategy also brings benefits
to service providers as no additional resources are necessary
to enhance overall user experience, which we modelled using
Prospect Theory.

I. INTRODUCTION

Over the past few years, data centres and Cloud infras-
tructures have become essential to enhance the capabilities of
mobile applications such as web search, speech recognition,
games, search for points of interest, and access to social
networks. Users of devices such as laptops, tablets, and
smartphones interact with applications that increasingly rely
on Cloud services used to provide content and offload data
processing tasks, delivering an overall better user experience.

Web-based applications are often optimised to achieve a
minimum percentile of requests that meet a given response
time. In these scenarios, users are generally treated equally and
information like intervals between requests is used as signals
to infer user think time. Peak demands are likely to degrade
the quality of service perceived by all users. The utilisation
of tablets and other devices with touch sensitive screens and
richer interfaces allow for obtaining more honest signals on
user behaviour, enabling providers to better understand when
results delivered by their Cloud services are consumed.

Figure 1 illustrates an example in which signals indicate

IFIP, 2013. This is the author’s version of the work. It is posted here by
permission of IFIP for your personal use. Not for redistribution. The definitive
version was published in Proceedings of the 9th International Conference on
Network and Service Management, 2013, http://dl.ifip.org/

when service results are consumed, where a user plays a game
that runs locally on the device and accesses Cloud services
such as calendar and train timetables. The user plays the game
while waiting for results of a service request to arrive, and may
not access the results immediately upon their transfer to the
mobile device. The Cloud provider, if knowing that the user
changed the application on focus, can prioritise other requests
and process the request at hand in low priority. Considering
this scenario, one of the questions in which we are interested
is: “Can these signals on service consumption be used to
differentiate the processing of requests, optimise the use of
Cloud resources, and deliver better user experience?”

This work attempts to shed some light on answering this
question, by exploring these signals to influence the manner
user requests are processed by Cloud services. With the goal
of improving overall user experience, the paper proposes a
resource management strategy that takes into account how
users consume the results of requests made to Cloud services.
The strategy assumes that even though users deserve simi-
lar experience, the manner they consume results of service
requests indicates that they have different quality of service
requirements, which in turn dictate how resources are allocated
to their requests in the Cloud. Although the proposed resource
management strategy can be used for private setting services,
we explore it for public Cloud services due to the large
amount of users and their heterogeneous behaviours. Apart
from increasing the overall user experience, understanding user
behaviour can reduce resource needs due to a more efficient
infrastructure management strategy.

The contributions of this paper are therefore:

• A resource management strategy that improves users’
experience by using information on how users consume
results of requests made to Cloud services;

• An architecture design to realise the proposed strategy in
a real scenario; and

• Simulation results that demonstrate under what conditions
the proposed strategy brings benefits.

Fig. 1: Example of more honest signal on consumption of service results.

II. BACKGROUND AND PROBLEM DESCRIPTION

Several solutions were provided to tackle challenges of
resource management in various types of distributed systems,
including high performance computing, clusters of computers
[1], Grid computing [2], and more recently Clouds. When us-
ing Clouds as a means to offload tasks of mobile applications,
users are often unaware of how many resources their requests
need [3], and the user’s perception on quality of service
depends on whether the results are ready when he intends
to consume them. It is of the provider’s interest to guarantee
that the results be provided when the user expects them. In
web applications, providing such guarantees was commonly
interpreted as synonymous to reducing request response time.

In a society where human attention is increasingly becom-
ing a scarce commodity, and where users perform multiple
concurrent activities [4] on their mobile devices [5], response
time might not be the sole metric to optimise the use of Cloud
resources and improve user experience. With more honest
signals on how users are interacting with their devices and
considering how they consume results may help providers
optimise the use of their resources.

Figure 2 depicts two service requests, req1 and req2 made
by two distinct users over time. Each request, represented by
a black circle, has its respective response time (i.e. rt1 and
rt2). This work considers that by exploring honest signals
enabled by touch sensitive interfaces, such as the change
of application focus, scrolling and other touches on certain
interface elements, it is possible to reveal details on when the
user starts consuming the results of a service request. The
figure shows that the time before consumption for req1, i.e.
tc1, is greater than its response time. The second request, req2

Time

req1

rt1

tc1

d1

Request i

Start of result consumption for i
Response time for i

req2

rt2

tc2 d2

 / reqi

tci

/ rti

di

Time before consumption of i

ct1

ct2
 / cti

User patience for request i

Fig. 2: Request times considered in this work.

shows a different scenario where the user expects to consume
the results tc2 before all results are delivered to the device.
The information on tc2 can be determined, for instance, by
the user starting to scroll down a page before it is completely
loaded.

For a request reqi, we term as the user’s patience the
distance between response times and time to start consuming
results di, e.g. d1 = tc1 � rt1. As di approaches 0, a user
becomes less patient, eventually becoming angry if di is
negative. To characterise the user experience ue, we use an
approach based on Prospect Theory, where the sense of losing
an opportunity has higher impact in a user’s satisfaction [6], as
illustrated in Figure 3. As described in the evaluation section,
d < 0 translates into worse ue than positive d.

Considering a model where users’ expectation on when

Patience (d)

User experience (ue)

1 2

-2 -1

Fig. 3: Using Prospect Theory [6] to model user experience as a
function of patience.

to consume results is not heavily influenced by the average
request response times, we want to: (i) minimise the distance
between response times and time to start consuming results,
i.e. d1 and d2 in Figure 2; and (ii) investigate the impact of
minimising this distance on overall user experience.

III. ADAPTIVE QOS ARCHITECTURE

This section describes the proposed architecture for adapting
the quality-of-service of Cloud services according to user
consumption behaviour. As shown in Figure 4, the architecture
comprises:

• User Device: smartphones, tablets, or a device that runs
applications that access services from a Cloud.

• QoS Setup Assistant: runs on the user device and assists
the Cloud provider to identify whether an application ac-
cessing a remote service needs high QoS. This component
uses information on Cloud services, local applications,
clock time, geographical location, and other sensors to
assist determining service consumption behaviour.

• Cloud Service Provider: offers services (e.g. web search,
gaming, and data provisioning) that require computing
resources provided by the Cloud service provider itself
or hosted by a third party.

• QoS Setup Service: used by the Cloud Provider to set
up QoS parameters for services.

Fig. 4: Components to realise the adaptive QoS setup using users’
service consumption behaviours.

User Device and Cloud Service Provider are components
that underly typical scenarios of users consuming Cloud ser-
vices and resources. The components introduced here are QoS
Setup Assistant, which runs on the user device, and the QoS
Setup Service, executed on the Cloud provider. Figure 4 depicts
one QoS Setup Service per Cloud service, which we believe
is a more appropriate scenario where resources for Cloud
services are allocated using resources from IaaS providers.
This is the scenario considered here, but the architecture
can adapt to PaaS providers offering and managing multiple
services, where a QoS Setup Service would define the QoS
parameters for multiple services.

A. QoS Setup Assistant

QoS Setup Assistant is an optional component that de-
termines a user’s service consumption behaviour. A Cloud
provider offering a search engine can identify when a user
clicks on a hyperlink on a page if the mobile application using
the service was developed in house. However, if the provider
is not responsible for the development of the application or
the OS, it is unlikely to identify whether a user is scrolling
down the results page, identify whether the results page in on
focus, or if the user changes the focus to a music player.

This component explores APIs exposed by the device’s
OS to deliver important contextual information to the QoS
Setup Service, such as list of active applications, windows
that are on focus, window sizes, GPS data, and click speed.
This information can be obtained from mobile operating
systems by instrumenting what views are displayed, when an
application goes to background or returns to foreground exe-
cution, among other details. For ordinary operating systems,
such as Microsoft Windows, GNU/Linux or Mac OS X this

information is commonly exposed by their window managers.
When information cannot be obtained from the device OS, the
client application needs to incorporate the QoS Setup Service
functionalities to collect information specific for the service
it uses (see Figure 4). For instance, the client application
can inform the provider about the user’s menu navigation
behaviour.

In order to enhance privacy, the QoS Setup Assistant may
calculate locally when resources are available, the expected
time before consumption of results tc and send only this
information to the QoS Setup Service associated with the
request. Note that, if a user is performing a single task, the
tc will be equal to the response time as the user requires
prompt results. Moreover, the assistant can notify the user, via
a configuration menu, the type of information from his/her
device that can be published to the Cloud provider.

Another aspect to be considered is the frequency at which
the collected information is reported to the Cloud Provider.
The information can be sent at regular time intervals, and the
provider can use historical information for inferring user be-
haviour. Another approach consists in dynamically determine
when information about a user is required based on how other
users interact with the service. In addition to determining the
frequency of data reporting, it is important to evaluate the
cost of collecting data from user devices, especially when
considering mobile devices with limited battery life time. The
cost of performing such data collecting is ongoing work, and
this paper focuses primarily on the benefits of collecting such
user behaviour data.

B. QoS Setup Service

QoS Setup Service determines how users consume service
results and how important certain services are to them. It con-
siders two phases for each service: an initial setup where the
user’s context helps determining the required QoS; and how
users interact with the service after the initial setup. This work
focuses on the latter by introducing a resource management
strategy termed as Patience-aware Prioritisation (PaP) that
adjusts the QoS of users as follows:

1) QoS Setup Service obtains the expected time before
consumption of results tc—e.g. reported by QoS Setup
Assistant—and expected response time rt and determines
the user patience d.

2) Give priority to users who have low values of d; i.e. those
who are “less patient”.

To avoid starvation a user’s patience decreases as his request
waits to be served.

20

40

60

80

100

120

140

●

● ● ● ● ● ●

●

●

●

● ● ● ● ●

● ●

● ● ● ● ●

●

●

●

● ● ●

●

20 40 60 80 100 120 140 160 180 200 220 240 260 280
Time (secs)

Lo
ad

 (%
)

● Scenario1 Scenario2 Scenario3

Fig. 5: Workloads with resource peak demands.

IV. EVALUATION

The proposed resource management strategy uses signals on
service consumption to prioritise requests and improve overall
user experience. Requests from users who require prompt
results are processed before those from users who have more
relaxed requirements—i.e. are more patient—without heavy
compromise on the latter. The experimental results presented
in this section demonstrate that the principle is sound. The
proposed strategy, PaP, is compared against a baseline strategy,
Standard, which processes requests as they arrive.

A. Experiment Setup

The evaluation uses a built-in-house discrete-event simulator
that contains a computing resource used by a service to serve
multiple users’ requests. To simplify the analysis, the length of
requests is constant; they always demand the same processor
time. We classified the users in two categories: single-task
users who require prompt results from the Cloud provider,
and multi-task users who engage in other concurrent activities
and therefore do not require prompt results. The tc of single-
task and multi-task users is 2 and 10 seconds respectively.
The modelled service can process 100 requests at a time. We
also considered three scenarios with different load rates, each
with three demand peaks as shown in Figure 5. Load over
100% indicates that certain requests wait for resources to be
processed. The number of users varies depending on the load,
ranging from 500 to 700 users; where each user makes from
10 to 30 server requests, thus generating up to 2100 requests
in the third scenario.

We first evaluate the user patience d as described in Section
II, which expresses how long users start to consume results
once they are available or how long they wait for results to
become available. To improve the experience of single-task
users who require prompt results, we explore the patience
of multi-task users. In the experiments, the service time is

2 seconds, hence forcing the patience d of single-task users to
be zero.

B. Result Analysis

Figure 6 shows the patience of multi-task users under each
scenario. We observe that the lower the number of users
the higher their patience for both strategies. This happens
because the provider can process requests faster and results
stay longer in users’ devices before they are consumed. PaP
strategy reduces the users’ patience in comparison to Standard
by prioritising requests based on estimations of when users
consume results. As the system load increases, the provider
requires, in average, more time to answer to user requests. In
this case, thus the PaP strategy makes more use of the patience
of multi-task users.

0

2

4

6

s1 s2 s3
Scenarios

U
se

r P
at

ie
nc

e
(s

ec
s)

PaP Standard

Fig. 6: Overall patience of multi-task users.

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

s1 s2 s3
Scenarios

U
se

r P
at

ie
nc

e
(s

ec
s)

PaP Standard

Fig. 7: Overall patience of single-task users.

Figure 7 depicts the overall patience of single-task users.
As aforementioned, the fact that the user patience is negative
means that the user expected to consume the response before

it arrives. By reducing the patience of multi-task users, single-
tasks users enjoy better user experience because their requests
are given priority. Note that the benefit of the PaP strategy
increases as the number of users grows, mainly because
more users compete to obtain CPU time to process requests.
Prioritisation of single-task users’ requests makes them wait
less to obtain results. The increase of the standard deviation
with the system load is a result of the request bursts in
Scenarios 2 and 3.

Figure 8 shows, for Scenario 3, the impact of the strategies
on user experience (ue). We use prospect theory [6] to model
user experience using Equation 1. The single-task users have
user experience factor below 0 and multi-task users have
user experience factor above 0. The figure illustrates that PaP
improves experience of single-task users until the experience
of multi-task users becomes affected negatively. Such a point
is where both types of users start to compete for resources to
have positive user experience.

ue =

8
><

>:

log(d), if d > 0

�exp(�d), if d < 0

0, otherwise

(1)

0

500

1000

1500

−15 −12 −9 −6 −3 0 3 6 9 12 15
User Experience Factor

R
eq

ue
st

s

Single-task Users Multi-task Users

(a) Standard strategy.

0

500

1000

1500

−15 −12 −9 −6 −3 0 3 6 9 12 15
User Experience Factor

R
eq

ue
st

s

Single-task Users Multi-task Users

(b) PaP strategy.

Fig. 8: User experience for Scenario 3.

0
200
400
600
800

−15 −12 −9 −6 −3 0 3 6 9 12 15
User Experience Factor

R
eq

ue
st

s

Single-task Users Multi-task Users

(a) Standard strategy.

0

500

1000

−15 −12 −9 −6 −3 0 3 6 9 12 15
User Experience Factor

R
eq

ue
st

s

Single-task Users Multi-task Users

(b) PaP strategy.

Fig. 9: User experience for Scenario 2.

Figure 8 (a) depicts that several requests have user experi-
ence factor between -12 and -3, whereas a great number of
requests are around 2. With PaP, in Figure 8 (b), a considerable
number of requests have their user experience reduced, having
several of them migrated from 2 to 1 and 0. This helps bringing
the requests with very low user experience close to -3. Similar
behaviour happens in Scenario 2 (Figure 9), however with less
impact due to lower load and peak demands.

Multi-task users are not affected because the priority of their
requests increases as they wait for resources, and after some
time they compete with single-task users, thus having the same
priority. We believe PaP is suitable to peak demand scenarios
where adjusting the Cloud infrastructure to handle the surge
takes time; additional VMs are required and booting them up
takes a while; a period during which PaP can be enforced.
Another aspect to be highlighted is that the improvements
of PaP over the Standard strategy does not require additional
resources.

V. RELATED WORK

Existing work leveraged mobile users’ contextual informa-
tion to improve Cloud service delivery [7], [8]. La and Kim [7]
proposed a framework where Cloud services are provided
or adapted to a user’s context. Sheng et al. [8] proposed a
platform for personalised service provisioning, which aims to
provide more personalised services that improve overall user
experience. Software engineering methods also considered
support for context-aware applications [9]. Other approaches
directed service requests to specific service providers that
satisfy certain quality of service constraints [10], [11]. By
identifying similarities amongst QoS of active and training
users, CloudRank [12] ranks the personalised QoS for a set of
Cloud services.

Whereas most of these context-aware [13] solutions focus
on personalising Cloud services, they pay little attention to
Cloud resource management. For the latter, previous work
provides techniques to adjust resource allocation and guarantee
QoS [14], [15] by, for instance: adjusting resource allocation
under performance interference [15]; collecting information
from the mobile device and reporting it to the provider to
adjust the service [16]; using information on the power con-
sumed by a mobile device to decide on the QoS requirements
and whether a service should run locally or on the Cloud [17].

Previous work also tackled several challenges inherent to
job scheduling [18], [19]. For instance, Boloor et al. proposed
a request allocation algorithm for context-aware applications
hosted in a distributed Cloud [20]. Buyya et al. [21] dis-
cuss challenges of autonomic resource provisioning based on
users QoS requirements. Other techniques were introduced
to improve resource management in Clouds and guarantee
QoS, such as provide means for performance isolation across
multiple VMs [22]. Previous work also highlighted some of the
sins of Cloud computing research [23], and the heterogeneity
of Cloud workloads [24].

Other approaches focus on methods to enhance the per-
formance of local processing, bandwidth utilisation, memory
consumption, power and connectivity by inferring local con-
text [25], [26], [27], [28], [29]. Our previous work proposes
scheduling Cloud jobs according to variations of the user
context, such as time, location and social settings [30]. We
aim to build on such efforts to improve the provision of
Cloud services and the overall user experience when using
the services.

VI. CONCLUSIONS

This paper motivated the importance of understanding how
users consume Cloud services and how this knowledge can
be leveraged to enhance user experience and optimise the
use of Cloud resources. Sensors to understand consumption
behaviour are becoming more pervasive at both hardware and
software levels. We proposed an architecture and resource

management strategy to prioritise user requests based on
information on when users need the results from the Cloud.

We find that it is possible to improve the experience of users
that require prompt results from the Cloud without heavily
affecting users who are involved in multiple activities at a
time, thus not demanding quick answers from the Cloud. The
strategy tries to leverage as much as possible the patience
of multi-task users to enhance the user experience of single-
task users. To achieve this goal multi-task users have their
priority increased over time, so when they wait long enough
for resources, they start to complete with single-task users.

This work illustrates how traditional resource management
can leverage more honest signals provided by smartphones,
tablets, and software systems of such devices. A strategy
that employs user consumption behaviour to provision Cloud
services was presented. Initial evaluation shows that it suits
scenarios with peak demand where the Cloud infrastructure
has not yet been adjusted accordingly; additional VMs may be
required at additional cost and provisioning them takes time.
Ongoing work is on prototyping the QoS Setup Assistant to
obtain signals to determine service consumption behaviour.

REFERENCES

[1] R. Buyya, Ed., High Performance Cluster Computing:
Programming and Applications, ser. 0-13-013785-5. NJ,
USA: Prentice Hall PTR, 1999, vol. 2.

[2] I. Foster and C. Kesselman, The Grid2: Blueprint for
a New Computing Infrastructure, 2nd ed., ser. ISBN:
1558609334, I. Foster and C. Kesselman, Eds. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2003.

[3] C. B. Lee and A. Snavely, “On the user - scheduler
dialogue: Studies of user-provided runtime estimates and
utility functions,” International Journal of High Perfor-
mance Computing Applications, vol. 20, no. 4, pp. 495–
506, 2006.

[4] R. Benbunan-Fich, R. F. Adler, and T. Mavlanova,
“Measuring multitasking behavior with activity-based
metrics,” ACM Transactions on Computer-Human Inter-
action, vol. 18, no. 2, pp. 7:1–7:22, Jul. 2011.

[5] L. M. Carrier, N. A. Cheever, L. D. Rosen, S. Benitez,
and J. Chang, “Multitasking across generations: Multi-
tasking choices and difficulty ratings in three generations
of americans,” Computers in Human Behavior, vol. 25,
no. 2, pp. 483–489, Mar. 2009.

[6] D. Kahneman and A. Tversky, “Prospect theory: An
analysis of decision under risk,” Econometrica: Journal
of the Econometric Society, pp. 263–291, 1979.

[7] H. J. La and S. D. Kim, “A conceptual framework for
provisioning context-aware mobile cloud services,” in

Proceedings of the IEEE 3rd International Conference
on Cloud Computing (CLOUD), 2010.

[8] Q. Z. Sheng et al., “User-centric services provisioning
in wireless environments,” Communications of the ACM,
vol. 51, no. 11, pp. 130–135, 2008.

[9] F. C. Delicato, I. L. A. Santos, P. F. Pires, A. L. S.
Oliveira, T. V. Batista, and L. Pirmez, “Using aspects and
dynamic composition to provide context-aware adapta-
tion for mobile applications,” in Proceedings of the 2009
ACM symposium on Applied Computing (SAC), 2009, pp.
456–460.

[10] H. Song, C. S. Bae, J. W. Lee, and C.-H. Youn, “Utility
adaptive service brokering mechanism for personal cloud
service,” in Proceedings of the Military Communications
Conference (MILCOM), 2011, pp. 1622–1627.

[11] P. Papakos, L. Capra, and D. S. Rosenblum, “Volare:
context-aware adaptive cloud service discovery for mo-
bile systems,” in Proceedings of the 9th Interna-
tional Workshop on Adaptive and Reflective Middleware
(ARM), 2010.

[12] Z. Zheng, X. Wu, Y. Zhang, M. R. Lyu, and J. Wang,
“QoS ranking prediction for cloud services,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 99, no.
PrePrints, p. 1, 2012.

[13] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on
context-aware systems,” International Journal of Ad Hoc
and Ubiquitous Computing, vol. 2, no. 4, pp. 263–277,
Jun. 2007.

[14] S. Ferretti, V. Ghini, F. Panzieri, M. Pellegrini, and
E. Turrini, “Qos-aware clouds,” in Proceedings of the
IEEE 3rd International Conference on Cloud Computing
(CLOUD), 2010.

[15] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds:
managing performance interference effects for qos-aware
clouds,” in Proceedings of the 5th European conference
on Computer systems (EuroSys), 2010.

[16] P. Zhang and Z. Yan, “A qos-aware system for mobile
cloud computing,” in Proceedings of the IEEE Interna-
tional Conference on Cloud Computing and Intelligence
Systems (CCIS), Sep. 2011, pp. 518–522.

[17] Y. Ye et al., “A framework for qos and power man-
agement in a service cloud environment with mobile
devices,” in Proceedings of the Fifth IEEE International
Symposium on Service Oriented System Engineering
(SOSE), 2010.

[18] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn,
“Parallel job scheduling – a status report,” in Job
Scheduling Strategies for Parallel Processing (JSSPP),
2004.

[19] A. Takefusa, S. Matsuoka, H. Casanova, and F. Berman,
“A study of deadline scheduling for client-server systems
on the computational grid,” in Proceedings of the 10th
IEEE International Symposium on High Performance
Distributed Computing (HPDC), 2001.

[20] K. Boloor, R. Chirkova, T. Salo, and Y. Viniotis, “Man-
agement of SOA-based context-aware applications hosted
in a distributed cloud subject to percentile constraints,”
in Proceedings of the IEEE International Conference on
Services Computing (SCC), 2011.

[21] R. Buyya, R. N. Calheiros, and X. Li, “Autonomic cloud
computing: Open challenges and architectural elements,”
Proceedings of the Third International Conference on
Emerging Applications of Information Technology, pp.
3–10, 2012.

[22] M. Silva, K. D. Ryu, and D. D. Silva, “VM performance
isolation to support qos in cloud,” in Proceedings of the
IEEE 26th International Parallel and Distributed Pro-
cessing Symposium Workshops & PhD Forum (IPDPSW),
2012, pp. 1144–1151.

[23] M. Schwarzkopf, D. G. Murray, and S. Hand, “The seven
deadly sins of cloud computing research,” in USENIX
HotCloud, 2012.

[24] C. Reiss et al., “Heterogeneity and dynamicity of clouds
at scale: Google trace analysis,” in Proceedings of the
Third ACM Symposium on Cloud Computing (SoCC),
2012.

[25] F. Koch and F. Dighum, “Enhanced deliberation be-
haviour for bdi-agents in mobile services,” in Proceed-
ings of the 8th International Conference on Practical Ap-
plications of Agents and Multi-Agent Systems (PAAMS),
Salamanca, May 2010.

[26] Y. Xiao, P. Hui, P. Savolainen, and A. Ylä-Jääski, “Cas-
cap: Cloud-assisted context-aware power management
for mobile devices,” in Proceedings of the 2nd Inter-
national Workshop on Mobile Cloud Computing and
services (MCS), 2011.

[27] K. Kumar and Y.-H. Lu, “Cloud computing for mobile
users: Can offloading computation save energy?” IEEE
Computer, vol. 43, no. 4, pp. 51–56, 2010.

[28] B. Y. L. Kimura, H. C. Guardia, and E. dos Santos Mor-
eira, “Disruption-tolerant sessions for seamless mobility,”
in Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC), 2012.

[29] L. Capra, W. Emmerich, and C. Mascolo, “CARISMA:
Context-Aware Reflective mIddleware System for Mobile
Applications,” IEEE Transactions on Software Engineer,
vol. 29, no. 10, pp. 929–945, 2003.

[30] M. D. Assunção, M. A. S. Netto, F. Koch, and S. Bianchi,
“Context-aware job scheduling for cloud computing envi-
ronments,” in Proceedings of the IEEE Fifth International
Conference on Utility and Cloud Computing (UCC),
2012.

