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Abstract—Organisations and end-users are increasingly using
Cloud resources to take advantage of the anticipated benefits
of a more cost effective and agile IT infrastructure. Virtual
machines are provisioned based on a selection of available images,
which often contain the operating system and the software stack
required by applications. When managing an image library,
some of the challenges faced by a resource provider include
(i) identifying the optimal number of virtual machine images
that satisfy most user requirements, and (ii) bundling software
systems into images to minimise the time to provision virtual
machines and ease the selection of images from an end-user’s
perspective. Using a traditional data centre workload, this paper
proposes an algorithm for selecting software bundles for virtual
machine images and examines the impact of bundle selection on
the number and characteristics of resulting images. The main
finding is that creating a small set of virtual machine images
packed with the most popular software systems is enough to
drastically reduce the time to deploy the software stack required
by applications, and hence minimise the time for provisioning
virtual servers in a Cloud infrastructure.

I. INTRODUCTION

Under a cloud [1] model that delivers Infrastructure as
a Service (IaaS), virtual machines are provisioned from a
selection of available virtual machine images, which often
contain the operating system and the software stack required
by user applications. Users can start from basic images offered
by the cloud provider and customise them to their needs
or, in certain cases, upload their own images to the cloud.
Although over time this model allows for users to select from
a large pool of images and reuse images that better match their
requirements, it can easily lead to image sprawl, which may
exacerbate the problem of selecting suitable images [2].

The ability for a customer to rapidly deploy new workloads
via new cloud instances is a key selling point of cloud and
virtualisation. However, for this to be a reality customers must
find an appropriate set of images that meet the minimum
requirements of their application workload; including non-
functional requirements such as speed, robustness, and scal-
ability. This selection process is largely manual and expects
customers to tediously iterate through many choices to find
the one most suitable for their needs.

Existing solutions attempt to address the challenge of
finding suitable virtual machine images by providing means to
annotate existing images and offering mechanisms for image
discovery [3], [4], [5]. One alternative method is to define a
small set of virtual machine images that have the software
bundles that satisfy most application requirements. Limiting

the choices to a well defined set of virtual machine images
is key to standardisation and reducing the cost of managing
the servers created from these images. The savings come from
the extreme automation of server management enabled by the
standardised set of images.

Our previous paper described a framework to assist the
selection of virtual resource templates, focusing on resource
attributes such as CPU, memory, and disk capabilities [6], and
did not account for the software stack. This paper builds on
previous work and, by using the workload of an existing data
centre, proposes an image creation algorithm considering the
software stack required by user applications. The workload
represents an entire stack including the operating system,
software, application, and the supporting non-functional re-
quirements (e.g. ability to perform x transactions per second).
We examined requests for hundreds of servers within a pro-
duction enterprise data centre and used this information to
derive bundles of software that should be pre-installed with
the images to be offered by a cloud infrastructure. The main
contributions of this work are:

• A software bundle selection algorithm for deriving a
set of images required to satisfy the majority of user
requirements;

• Characterisation of a production enterprise data centre
workload considering software stack requirements;

• Evaluation of the software bundling algorithm and its
impact on virtual machine provisioning time and the
number of required virtual machine images.

Our evaluation shows that creating a small set of virtual
machine images packed with the most popular software sys-
tems is enough to drastically reduce the time to deploy the
software stack required by applications, thus minimising the
time for provisioning Cloud virtual servers. The results, tech-
niques, and ideas presented in this paper can be leveraged by
researchers and practitioners working on image management.
Such topic is particularly relevant for large data centres as
provisioning of virtual machines depends on carefully created,
tested, and validated images; and these steps at present may
not be fully automated.



Fig. 1. Requests for virtual machines contain, among other parameters, the software stack that needs to be in the virtual machine. From the resource provider’s
perspective, the challenge is to identify the optimal number of VM images with the right software bundles.

II. PROBLEM DESCRIPTION AND METRICS

The ability to quickly create VMs with different software
stacks is important for realising the elastic and on-demand
capacity scaling promised by cloud computing. The open
community has approached this problem by creating and
sharing VM images, as in Amazon EC2’s Amazon Machine
Images (AMI). To provision VMs, users choose from these
publicly available AMIs and add to or remove software from
them to make them match their needs. Although this approach
is attractive, it does not scale to large enterprises that need
to create a large number of standardised VMs, which is the
scenario we explore in this paper.

Figure 1 depicts a typical enterprise scenario where users
request VMs by specifying, among other parameters, the
required software stack to run their services and applications.
The cloud provider then maps the requirements to the available
images. The images may already contain a set of pre-defined
software stack. Once an image is selected, a virtual machine
is created from it and adapted (software packages are added
or removed) to meet user requirements, and then deployed for
use. Note that software systems may need to be removed not
only to save disk space or to speed-up provisioning time, but
also due to licensing issues.

The provider has a trade-off between having a large number
of images that enable fast creation of new VMs versus the cost
of supporting and maintaining them up-to-date. Solutions that
help with this trade-off are essential for providers to maximise
the reuse of images and minimise the cost of supporting them.
Besides, such solutions can help users that have access to many
images in the cloud. Such images, with appropriate software
stacks are hereafter also termed as bundles.

The effectiveness of the proposed software bundling algo-
rithm is measured with the following metrics:

• Deployment time: time to provision a virtual ma-
chine, including time to add or remove software
packages;

• Number of images: number of images required to
meet a given set of virtual machine requests, where
a VM image is a combination of operating system
together with a set of software bundles.

A. Workload overview

The data set used in this paper consists of 747 requests
for enterprise server configurations, which include specifica-
tions for CPU, memory, disk, and most importantly, required
software packages. All server requirements, collected over a
period of three years, are based on the same operating system
and hardware platform to rule out differences not attributable
to the workload. In this section, we characterise the data
set considering multiple dimensions, viz., (i) the software
packages requested; (ii) number of requests per software; (iii)
number of software packages per request; and (iv) pairs of
dependencies between software systems.

We identified a set of 23 software packages (henceforth
also referred as middleware M1,...,M23) in these server re-
quests. Databases and application servers comprise more than
50% of the packages, which is a typical of enterprise work-
loads. In addition, more than 80% of the requests required only
two software systems, 10% required three or four software
systems, and the remaining requests required up to nine
software systems. Four software systems were required by
more than 200 requests. The remaing software systems were
required by fewer than 50 requests in average.

Another interesting data relates to software dependencies.
Figure 2 presents the number of requests that required each pair
of middleware M1 to M23. Although we observe that most
middleware pair dependencies have fewer than 20 requests,
there is a small set of dependencies that have more than 60
requests. These dependencies must be investigated further in
order to create the images with appropriated software bundles.

In addition to considering software dependencies, it is
important to take into account the time required to install each
software. The workload used shows that the time required to
install a middleware varies from only a few seconds to over
2,500 seconds. Although this time does not seem much for
certain deployment scenarios, one must consider that software
deployment is only part of the process of provisioning a server.
Software installation times over 600 seconds could impact
negatively the deployment of applications that rely on the
instantiation of virtual clusters with multiple workers [7].
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Fig. 2. Pairs of middleware depedencies.

III. SOFTWARE BUNDLING ALGORITHM

The proposed software bundling algorithm uses a metric

called Software Utility to model how important a given

software is to a bundle. It is defined as:

SUi =
ri∑

j=1

instT ime(i)−
nri∑

k=1

remTime(i)

Where, ri is the number of requests that require software i,
and nri is the number of requests that do not require software
i. instT ime(i) and remTime(i) are functions that represent
the time for installation and removal of software i, respectively.
Variable SU is used to measure how important is a software
to be part of a bundle, considering the installation cost savings
and the removal cost lost when the software is in a bundle.

Algorithm 1 describes the pseudo-code for creating the
bundles. The main input parameters of the algorithm are:

• reqList: List of server requests, where each request
has a list of software systems;

• softList: List of available software systems, where
each software contains its installation time, removal
time, and software utility value;

• maxBundles: Maximum number of bundles;

• maxSoftSys: Maximum number of software systems
per bundle. Note that the algorithm can easily be
modified to add other constraints such as maximum
disk space or licenses used per bundle.

The algorithm starts by creating a list of empty bundles
(Line 1) and then sorts the list of software systems by the
decreasing order of their software utility values (Line 2). The
initial best provisioning cost is set to the value of provisioning
the requests using no bundles (Line 3). It then moves into a
loop to create each software bundle (Line 4–19) considering

the maxSoftSys value (Lines 5–19) to constrain the number of
software systems for each bundle. A bundle creation involves
iterating through the list of software systems (Lines 8–19),
where each software system is included in the bundle (Line
11), testing whether the provisioning cost of the requests
decreases (Line 12). If the cost is reduced, the algorithm keeps
it in a temporary variable (Line 15) along with the software
responsible for decreasing the cost (Line 16). In the end of the
softList iteration, the best software and provisioning cost are
stored (Lines 18–19). The algorithm iterates until all bundles
are created, and finally the bundle set is returned (Line 20).

Algorithm 1: Pseudo-code for generating a bundle set.

Input: reqList, softList, maxBundles, maxSoftSys
Output: bundleList

1 bundleList ← createEmptyBundles(maxBundles)
2 Sort softList by decreasing order of SU

// Evaluate with no bundles
3 bestCost ← evaluate(bundleList, reqList, softList)
4 foreach bundle in bundleList do
5 for k ← 1 to maxSoftSys do
6 bestSoftware ← null

// Temporary best cost
7 tmpCost ← bestCost
8 foreach s in softList do
9 if bundle contains s then

10 Ignore s for this bundle

11 bundle.addSoftware(s)
12 cost ← evaluate(bundleList, reqList,

softList)
13 bundle.removeSoftware(s)
14 if cost < tmpCost then
15 tmpCost ← cost
16 bestSoftware ← s

17 if bestSoftware #= null then
18 bundle.addSoftware(bestSoftware)
19 bestCost ← tmpCost

20 return bundleList

IV. EVALUATION

We evaluated the proposed software bundling algorithm
using the workload from a production data centre as described
in Section II-A. We developed a simulator to perform the
bundling process and investigated the impact on software de-
ployment time according to various input values and scenarios.

A. Setup and Input Parameters

The workload trace used in the experiments contains infor-
mation about server requests, their software stack requirements
and software installation and removal times. The simulation
parameters include the number of bundles to meet the software
requirements and the maximum number of software systems
per bundle. In addition to analysing deployment time, we also
show results on the characteristics of the software bundles
when varying the set of input parameters.
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Fig. 3. Total software deployment time for all requests as a function of the maximum number of bundles (0 to 20 bundles) and maximum number of software
systems per bundle (0 to 5 software systems).

B. Result Analysis

Figure 3 presents the main results on deployment time
required to meet the software requirements of all requests
in the workload. We also included an upper-bound to show
the deployment time considering empty bundles (NoSoft). The
number of bundles has higher impact on the deployment
time than the number of software systems per bundle, with
exception of maxSoftSys 1, which results in higher deployment
time in most cases compared to the other maximum number of
software systems per bundle. This happens because the overall
deployment time is highly dependent on a set of software sys-
tems with high installation time but low inter-dependency, i.e.
such software systems are not required together by the same
requests. Therefore, including them separately into multiple
bundles notably reduces the overall deployment time.
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Fig. 4. Average software deployment time as a function of number of bundles
and software removal time: 0 minutes, 1 minute, 5 percent of the installation
time, and 10 percent of the installation time. The bundles can be configured
with all software systems (i.e. maxSoftSys=23).

Another important result from Figure 3 is that after a
certain threshold, increasing the number of bundles has little
impact on software deployment time. This occurs because after
a certain number of bundles, only requests with small software
utility benefit from new bundles, as the first bundles benefit

requests with high software utility. In addition, the impact
of bundle configuration and number of bundles depends not
only on the installation time but also on the software removal
time. For this reason, we also evaluated the deployment time
when modifying the software removal times, as illustrated in
Figure 4. If removal time is zero, it makes sense to put all
software systems into a single bundle so that the software
deployment time for all requests is zero. However, by doing
so, the image increases in size and the provisioning time of
the virtual machine increases accordingly. The investigation
on disk space constraints for software bundles requires further
analysis, which we leave for future work.

By analysing the deployment time per request it is possible
to observe how many requests can use the bundles with
zero or close to zero software deployment time. Figure 5 (a)
shows that there are very few requests with deployment time
close to zero seconds and that the deployment time for the
requests varies within a large range—from close to zero to
approximately 6000 seconds. When we use a single bundle
with a single software, although the number of requests with
deployment time close to zero does not increase (it actually
decreases), the requests with deployment time greater than
3000 are eliminated (Figure 5 (b)). Therefore, eliminating a
single installation provides great benefits. If we go further, by
including a few bundles and software systems into them, we
observe a real shift towards no deployment time, as illustrated
in Figures 5 (c) and (d). The parameters used for the cases
presented in Figure 5 were selected based on the results and
conclusions drawn from Figure 3.

Until now we have presented results for the number of
bundles and software systems per bundle. Figures 6, 7, and 8
show the software bundles and software utility as a function of
the number of bundles having maxSoftSys=1, maxSoftSys=3,
and maxSoftSys=5 respectively. These figures how how these
bundles look like. A general aspect of these figures is that
software systems with high software utility tend to be present
in the bundles since the number of bundles is small, and they
remain in the bundles as the number of bundles increases. As
the number of bundles increases, the bundling algorithm adds
software systems with low software utility into the bundles.
This is the expected behaviour due to the bundling algorithm
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Fig. 5. Software deployment time for all requests and a subset of number of bundles and maximum software systems per bundle.

strategy of sorting the software systems by their decreasing
value of the software utility values. However, there are two
interesting aspects in the results of these figures.

The first interesting aspect of the bundling process il-
lustrated in Figures 6, 7, and 8 is that there are software
systems with negative utility that are bundled before software
systems with positive utility. Intuitively, one would expect all
software systems with positive utility values to be bundled
before the software systems with negative utility values. But
the opposite happens because the utility value relies on the
installation and removal times considering that the bundle in
which the software is placed is empty. As the bundles start
to be filled with software systems, the utility evolves and
therefore, software systems with low utility start to fit better in
the bundles than software systems with high utility. Another
reason is that, as the number of bundles increases, the software
systems with low utility are used in isolated bundles, and these
software systems do not reduce the quality of the early created
bundles.

The second interesting aspect of the bundling process
depends on the maximum number of software systems allowed
per bundle. As we increase the number of bundles, the software
systems do not remain in the same bundle. This can be seen
already when maxSoftSys=5 (Figure 8). This follows the same
explanation as above regarding the fact that the utility of the
software systems evolves as the bundles are modified in the
bundling process.

V. RELATED WORK

Existing work has focused on minimising the time required
by operations involved in the process of server provisioning;
important factors in scenarios such as the creation of virtual
clusters [7] and minimisation of energy consumption [8], [9].
For example, Snowflock provides a mechanism for fast VM
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Fig. 6. Software bundles and software utility as a function of the number of
bundles having maxSoftSys=1.

cloning that allows for swift instantiation of workers on Cloud
environments [10]. Ganguly et al. [11] propose techniques
to minimise the hassle of system configuration by deploy-
ing virtual machines with pre-configured system components
followed by the deployment of delta configurations. Sethi et
al. [12] address a similar issue by providing a scheme that
discovers and preserves software dependencies that are then
stored along with virtual machine images and reused for later
deployments. Wartel et al. [13] propose a mechanism for trust
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and distribution of virtual machine images across sites whereas
Pfitzmann and Joukov [14] present and assess a technique for
mapping existing IT systems to multi-image templates. Kochut
and Karve [15] propose and evaluate a model that explores
virtual machine image similarity to reduce the data volume
transferred from a storage server to the hypervisor on which
virtual machines are instantiated. Assunção et al. provide a
technique for deriving VM templates that match the majority

of user requests in a Cloud infrastructure [6].

The concept of software bundling predates the personal
computer era [16]. The challenge of software bundling for
virtual machines has been attacked mainly from two fronts:
(i) by allowing users to pack the software they require into the
virtual machine images and providing mechanisms for image
discovery for new deployments based on these images; and (ii)
by discovering the software bundles that satisfy most users and
providing virtual machine images with these bundles. Filepp et
al. [3] tackle the problem of choosing an image for a VM by
selecting the image that yields the smallest software migration
cost (i.e. the cost for installing the required software and
removing software that is not necessary). The Mirage project
attempts to provide an image library and means for searching
and fastly retrieving images [5] and techniques to avoid image
sprawl [2]. Dastjerdi et al. [4] propose a service that matches
instances that users provide to appropriate offerings of cloud
providers.

Striking a balance between number of software bundles
and provisioning performance is important as image sprawl
can raise several issues, including difficulties in software
patching [17] and security [18]. Sapuntzakis et al. [19] attack
the problem of patching software systems by using the concept
of appliances dissociated from the software configuration and
data. Appliances can be maintained and patched irrespective of
the user data, which can later be applied to a patched appliance.

Our paper focuses on assisting system administrators in
selecting the software stack to be included in virtual machine
images, whereas existing work focuses mainly on searching
images that can reduce provisioning time.

VI. CONCLUDING REMARKS

In this paper we studied the problem of selecting software
bundles for creating virtual machine images. We introduced
an algorithm that helps cloud providers and users in selecting
the right number of virtual machine images with appropriate
software bundles. In addition, using workload traces from a
production data centre, we evaluated the impact of software
bundles on the server provisioning time when varying pa-
rameters such as maximum number of bundles and maximum
number of software systems per bundle.

One of the main findings of our work is that creating a
small set of virtual machine images packed with the most
popular software systems is enough to drastically reduce the
time to deploy the software stack required by applications,
and hence minimise the time to provision virtual machines in a
Cloud. For instance, with a single bundle and a single software
system, we were able to observe savings on total deployment
time of approximately 40%. Reducing the server provisioning
time leads to several advantages such as enabling faster deploy-
ment of applications that require virtual clusters with multiple
workers and minimising peaks of power consumption during
software installation.

As a future work, we intent to evaluate how the software
bundling impacts the scheduling of virtual machines and the
energy consumption of physical servers [9], [20].
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