
SBAC-PAD 2019

Monte-Carlo Tree Search and Reinforcement
Learning for Reconfiguring Data Stream
Processing on Edge Computing

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre

University of Lyon, ENS of Lyon, Claude Bernard University Lyon 1
CNRS, Inria, Parallel Computing Lab (LIP), Lyon, FRANCE

Data Stream Processing Scenarios

• Application scenarios1

- Monitoring of operational infrastructure and precision agriculture
- Anomaly detection, fraud detection
- Smart cities, smart homes, traffic control, autonomous vehicles
- Wearable assistance, augmented reality

• Applications generate unbounded streams of data
• Data stream processing in the Cloud

- Multiple tiers of data collection and processing
- Data in motion systems, message brokers, that increase latency

• Edge computing for data stream processing

1Pictures are a courtesy of Google images

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 2

Cloud and Edge Computing

Sensors and
Controlers

Edge

Cloud Internet

LAN/WAN

Data storage
Batch and stream processing
Data warehousing
Business applications

Real-time data processing
Basic analytics
Data filtering, optimisation
Data caching, buffering

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 3

Data Stream Processing Dataflows1

• Applications are
structured as directed
graphs

• Operator properties
- Selectivity
- Data transformation
- State

• Operators are assigned to
resources (placement)

Data
events

Data streams
(tuples)

Operator

Data
sink

Mapping or
placement

Data
source

1M. D. Assunção et al., Resource Elasticity for Distributed Data Stream Processing: A Survey and
Future Directions, Journal of Network and Computer Applications, Vol. 103, pp. 1-17, Feb. 2018.

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 4

Modelling the Placement across Cloud and Edge

Edge
resources

Cloud
region

Edge
region

Cloud

Message
broker

• Infrastructure graph N = (R,L)
of compute resources R and
logical links L

- Resources have CPU and
memory capabilities

- Network links have bandwidth
and latency

• Application DAG G = (O, E) of
operators O and streams E ,
where an operator’s requirements
comprise:

- CPU MIPS to process an event
- Memory to load the operator
- Selectivity
- Data transformation

• Probability ρi→j that an output
event emitted by operator i will
flow through to operator j

1

2

3

ρ1→2 = 0.5

ρ1→3 = 0.5

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 5

Modelling the Placement across Cloud and Edge – Cont.

Resource A

Message
Queue

Data transfer
service

Dispatching
service

Resource B

Messages
Network

1

2

3

4

• Operators and
communication services
handle events in a FCFS
basis

• Both services are
modelled as M/M/1
queues

• Lpi : end-to-end latency of path pi is the sum of the computation time of all
operators in pi and the communication time to stream events along pi

• Placement goal: find a mapping M : O → R, E → L that minimises the
Aggregate end-to-end Latency (AL) of all paths:

AL = min
∑
pi∈P

Lpi

where P is the set of all paths in the application DAGa

aA. Veith et al., Latency-Aware Placement of Data Stream Analytics on Edge Computing,
ICSOC 2018, pp. 215-229, Hangzhou, China, Nov. 2018.

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 6

Need for Application Reconfiguration and its Goal

• Data stream processing applications are long-running
• Workload conditions may change over time
• Initial placement might not be ideal
• Resources at the edge are more failure prone

Reconfiguration goal: Find a new mapping M : O → R, E → L that
improves the current Aggregate end-to-end Latency

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 7

Markov Decision Process (MDP) and Reconfiguration

• MDP comprises a set of states S, where each state
s ∈ S has a number of possible actions A(s) and a
reward function R(s)

- State s contains a mappingM : O → R, E → L
- Action a ∈ A(s) is either migrating an operator to

another resource or maintaining its current mapping
- The reward R(s) reflects how much the aggregate

end-to-end latency is improved under state s:

R(s) = ALs0 − ALs
Edge

resources

Cloud

1

2

3

4 5

1

2

3

4 5

1 2 3 4 5

Breadth first
search Terminal

node

• An episode is a set of transitions
from an initial state to a terminal state

• An optimal policy defines the
transitions from states to actions that
maximise the reward

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 8

Monte-Carlo Tree Search1

Rollout Policy

Tree
Policy

Selection Expansion Simulation Backup

Repeat during budget

• In addition to a valid placement, a node/state s contains:
- A count N(s) with number of times the state was visited
- An action value Q(s, a) for each action
- A count N(s, a) of times an action a was picked

• Simulated episode is created using tree policy and rollout policy
- Exploration versus exploitation dilemma

• Generated return is used to update/initialise the action values

1R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction. MIT press, 2018.

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 9

MCTS-Best-UCT and Deployment Hierarchy (DH)

• MCTS-UCT:
- It assigns a bonus to the uncertainty in the value of a state-action
- Its tree policy picks the action that maximises the

Upper Confidence Bound (UCB)

• MCTS-Best-UCT:
- It maintains a list of visited nodes with their UCB values
- Instead of starting the tree search from the root node, its “tree policy”

picks the node with the best UCT value from the list

• Deployment Hierarchy:
- Action space can be large as the number of resources grows
- Operators on a path with a sink on the edge have priority
- DH sorts operators by their potential impact on end-to-end latency1

1A. Veith et al., Latency-Aware Placement of Data Stream Analytics on Edge Computing,
ICSOC 2018, pp. 215-229, Hangzhou, China, Nov. 2018.

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 10

Experimental Setup

Cloud

Edge sites

WAN

• Discrete-event simulation (OMNET++)
• One cloud with 2 servers and two edge

sites with 20 resources each
- Cloud servers are modelled as AMD

Ryzen 7 1800x
- Edge servers as Raspberry Pi’s model 2

• Edge resources are interconnected by a
LAN whereas the communication among
sites is done via a WAN (Internet)

• Network latency is modelled based on
experiments conducted in previous work1

1

1W. Hu et al., Quantifying the impact of edge computing on mobile applications, in 7th ACM
SIGOPS Asia-Pacific Workshop on Systems, pp. 5:1–5:8, New York, USA 2016.

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 11

Evaluated Applications

15 4

14

18

11

23

5

21

2 10 16 24 20

8 1 12

3

7

6

17

9220

1913

15

4

14

11

23

5

21

2

10

24

20168

1

1812

3

7

6

17

9

22

0

19

13
Application A

Application B
• The number of operators is based on the

graph order of RIoTBench1 applications
• For each application, 15 different

configurations were created by varying
the following operator properties:

Operator property Value

cpu 1–100 MIPS
Data transf. ratio 10–100%

mem 100–7,500 Bytes
Input event size 100–2500 Bytes

Selectivity 10–100%
Input event rate 1,000–10,000 messages

• The initial placement of sources and sinks changes in each configuration
• The sink on the critical path is always placed on the cloud

1

1https://github.com/dream-lab/riot-bench

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 12

Performance Evaluation Scenarios

• Scenario 1: Reinforcement algorithms receive a cloud-only deployment as
initial placement (all operators placed in the cloud)

- Q-learning, TDTS-Sarsa(λ)
- With and without Deployment Hierarchy

• Scenario 2: Evaluating the aggregate end-to-end latency, it considers all
reinforcement learning algorithms and previously proposed solutions

- Taneja’s algorithm, RTR and RTR-RP

• Execution budget is 10,000 iterations/episodes
• Initial placement is run for 300 seconds or until all application paths have

processed at least 500 messages each

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 13

Performance Metrics

• Latency improvement
• Algorithm execution time
• Time to best latency
• Number of operator migrations
• Minimum aggregate end-to-end latency

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 14

Latency Improvement

MCTS-Best-UCT

TDTS-SARSA()

Q-Learning
MCTS-UCT

0

20

40

60

80

100

La
te

nc
y

Im
pr

ov
em

en
t (

%
)

105

106

107

Al
go

rit
hm

 E
xe

cu
tio

n
Ti

m
e

(m
s)

Latency Improvement (%)
Algorithm Execution Time (ms)

MCTS-Best-UCT

TDTS-SARSA()

Q-Learning
MCTS-UCT

0

20

40

60

80

100

La
te

nc
y

Im
pr

ov
em

en
t (

%
)

104

105

106

107

Al
go

rit
hm

 E
xe

cu
tio

n
Ti

m
e

(m
s)

Latency Improvement (%)
Algorithm Execution Time (ms)

MCTS-Best-UCT

TDTS-SARSA()

Q-Learning
MCTS-UCT

0

20

40

60

80

100

La
te

nc
y

Im
pr

ov
em

en
t (

%
)

105

106

107

Al
go

rit
hm

 E
xe

cu
tio

n
Ti

m
e

(m
s)

Latency Improvement (%)
Algorithm Execution Time (ms)

(a) Without DH

MCTS-Best-UCT

TDTS-SARSA()

Q-Learning
MCTS-UCT

0

20

40

60

80

100

La
te

nc
y

Im
pr

ov
em

en
t (

%
)

104

105

106

107

Al
go

rit
hm

 E
xe

cu
tio

n
Ti

m
e

(m
s)

Latency Improvement (%)
Algorithm Execution Time (ms)

(b) With DH

Application A

Application B

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 15

Time to Achieve the Best Latency

MCTS-Best-UCT TDTS-SARSA() Q-Learning MCTS-UCT

100

101

102

103

Ti
m

e
to

 B
es

t L
at

en
cy

 (m
s)

Without DH
With DH

(a) Application A

MCTS-Best-UCT TDTS-SARSA() Q-Learning MCTS-UCT
10 1

100

101

102

103

Ti
m

e
to

 B
es

t L
at

en
cy

 (m
s)

Without DH
With DH

(b) Application B

• Application A: MCTS-Best-UCT performs at least 64% better that
MCTS-UCT without DH and 33% with DH

• Application B: MCTS-Best-UCT also performs best

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 16

Number of Operator Migrations

MCTS-Best-UCT TDTS-SARSA() Q-Learning MCTS-UCT
0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f M
ig

ra
tio

ns

Without DH
With DH

(a) Application A

MCTS-Best-UCT TDTS-SARSA() Q-Learning MCTS-UCT
0

2

4

6

8

10

12

14

16

Nu
m

be
r o

f M
ig

ra
tio

ns

Without DH
With DH

(b) Application B

• MCTS-Best-UCT discovers earlier on the operators that have the biggest
impact on latency (i.e., operators that are selective) and migrates them to
edge resources

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 17

Minimum Aggregate End-to-End Latency

AppA AppB
0

1

2

3

4

5

Ag
gr

eg
at

e
En

d-
to

-E
nd

 L
at

en
cy

 (m
s)

Without DH
CLOUD-ONLY
MCTS-Best-UCT
MCTS-UCT
Q-LEARNING

RTR
TANEJA
TDTS-SARSA()

AppA AppB
0

1

2

3

4

5

Ag
gr

eg
at

e
En

d-
to

-E
nd

 L
at

en
cy

 (m
s)

With DH
MCTS-Best-UCT
MCTS-UCT
Q-LEARNING

RTR-RP
TDTS-SARSA()

• The reinforcement learning algorithms improve the latency compared to
other solutions from the state of the art

• Expect for MCTS-Best-UCT and Q-learning, the solutions proposed by the
reinforcement learning algorithms are more stable

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 18

Conclusions and Future Work

• Summary and conclusions:
- Markov Decision Process for DSP application reconfiguration
- Evaluation of reinforcement learning algorithms
- MCTS-Best-UCT improves the time to best latency
- MCTS-Best-UCT is also able to achieve end-to-end latency similar to other

algorithms under a smaller budget

• Future work:
- Evaluate the algorithms on a real testbed
- Use other machine learning techniques to approximate the

Q-values (deep reinforcement learning)
- Use energy consumption as an optimisation metric

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 19

Questions?

Alexandre Veith, Marcos Dias de Assunção, Laurent Lefèvre – Reconfiguring Data Stream Processing Applications 20

