
Noname manuscript No.
(will be inserted by the editor)

Designing and Building SDN Testbeds for Energy-Aware
Traffic Engineering Services

Marcos Dias de Assunção1 · Radu Carpa1 · Laurent Lefèvre1 · Olivier

Glück1 · Piotr Bory lo2 · Artur Lasoń2 · Andrzej Szymański2 ·
Micha l Rzepka2

the date of receipt and acceptance should be inserted later

Abstract As experimenting with energy-aware tech-

niques on large-scale production infrastructure is pro-

hibitive, a large number of proposed traffic-engineering

strategies have been evaluated only using discrete-event

simulations. The present work discusses (i) challenges

towards building testbeds that allow researchers and

practitioners to validate and evaluate the performance

and quality of energy-aware traffic-engineering strate-

gies, (ii) requirements to fulfill when porting simula-

tions to testbeds, and (iii) two proof-of-concept testbeds.

One testbed uses and provides Software-Defined Net-

work (SDN) services created on the Open Network Op-

erating System (ONOS) while the other is a compo-

sition of virtual Open vSwitches (OVS) controlled by

the Ryu SDN framework. The aim of the testbeds is

to validate previously proposed energy-aware traffic en-

gineering strategies in different environments. We de-

tail the platforms and illustrate how they have been

used for performance evaluation. Additionally, the pa-

per compares results obtained in the testbeds with eval-

uations performed using discrete-event simulations and

presents challenges faced while implementing energy-

aware traffic engineering mechanisms as SDN services

in testbed environments.

Keywords energy-awareness · segment routing ·
anycast routing · testbeds

1Inria Avalon, LIP Laboratory, École Normale Supérieure de
Lyon, University of Lyon, France
2 AGH University of Science and Technology, Department of
Telecommunications, Krakow, Poland

1 Introduction

Advances in network and computing technologies have

enabled a multitude of services — e.g. those used for

big-data analysis, stream processing, video streaming,

and Internet of Things (IoT) [10] — that are hosted at

one or multiple data centres often interconnected with

high-speed optical networks. Many of these services fol-

low business models such as cloud computing [8], which

allow a customer to rent resources from a cloud and pay

only for what is really consumed. Although these mod-

els are flexible and benefit from economies of scale, the

increasing amount of data transferred over the network

requires continuous expansion of installed capacity in

order to handle peak demands. Existing work argues,

however, that the amount of electricity consumed by

network infrastructure may become a bottleneck and

further limit the Internet growth [26].

Given that high performance wired networks are sel-

dom fully utilised, many organisations attempt to curb

their energy consumption by reducing the amount of re-

sources that are active during off-peak periods. Several

technologies have been employed for this purpose, e.g.

putting resources into low power consumption modes

[23], adapting links’ data transmission rates [22,30], and

grouping and transferring packets in bursts [31]. Their

utilisation, in general, results in lower overall energy

use. On the other hand, traffic engineering [11], initially

created to reduce network bottlenecks by shifting traffic

to underutilised links, has been also investigated as a

network-wide approach to improve energy efficiency by,

for instance, consolidating traffic on a limited number

of links, and thus enabling the remaining links to enter

the low power consumption modes [41,19]. As a result,

the already difficult problem of optimising the use of

network resources became even more challenging.

2 Marcos Dias de Assunção1 et al.

To simplify configuration and management opera-

tions, traffic-engineering schemes are increasingly rely-

ing on SDN as it separates control and data planes and

provides a centralised view of (i) the network topol-

ogy, (ii) running applications and, (iii) traffic demands;

which are important requirements to program a net-

work and change its virtual topology according to traf-

fic conditions. In our previous work [19,18,9], we in-

vestigated SDN enabled traffic engineering to redirect

data flows and reduce energy consumption. We also

considered SDN based energy-aware anycast routing

[14] extended by introducing cloud services differenti-

ation [15], models of cooperation between SDN con-

troller and cloud orchestration software [17] and the

concept of interplay between fog and cloud infrastruc-

tures supported by wide area software defined network-

ing [16]. As experimenting with production networks

is rarely possible, the proposed techniques have been

evaluated using a discrete-event simulation tool (OM-

Net++ [5]), which provided very promising and valu-

able results. However, to fully investigate the subject

and assess whether simplifications made during simu-

lations have not led to biased results, it is necessary

to design proof of concept implementations by using

testbeds.

This work describes challenges and requirements to-

wards building platforms for evaluating energy-aware

traffic engineering applications and porting simulations

to such testbeds as SDN services. We discuss the design

and implementation of two approaches: an SDN appli-

cation that uses segment-routing to redirect flows in

backbone networks in order to free certain links [19] and

energy-aware anycast strategies considering the type

of energy used to power target data centres. We de-

scribe how custom platforms, called The GrEen Traf-

fic engineering testBed - Segment Routing (GETB-SR)

and The GrEen Traffic engineering testBed - Anycast

Routing (GETB-AR), are used for evaluating the pro-

posed applications. We compare results gathered in the

testbeds with simulation-based results and present chal-

lenges faced while designing energy-aware traffic engi-

neering mechanisms as SDN services in testbed envi-

ronments.

The rest of this paper is organised as follows. Sec-

tion 2 discusses energy-aware traffic engineering require-

ments for platforms used for evaluation and SDN con-

cepts. The testbeds used for building proofs of concept

are presented in Section 3. The SDN applications de-

veloped for validating and evaluating the performance

of the traffic-engineering strategies, their life cycles, re-

sults and issues regarding deployment in the testbed

are described in Section 4. Section 5 discusses related

work and Section 6 concludes the paper.

2 Energy-Aware Traffic Engineering and SDNs

Internet traffic engineering deals with issues of per-

formance evaluation, optimisation, and deployment of

technology for measuring, characterising, modelling and

controlling network traffic. One of its goals is to con-

trol and optimise the routing function to steer traffic

through the network in an effective way [11], provid-

ing appropriate Quality of Service (QoS) and efficient

use of network resources. Over the years, interest has

grown on applying traffic engineering as a network-wide

technique to improve the energy efficiency of network

resources [41,43,14]; such efforts are hereafter termed

simply as Green Traffic Engineering (GreenTE). Al-

though obtained results are promising, much of the

work remains based on numerical analyses and simula-

tion. In an attempt to validate our findings using a real

testbed, we identified certain GreenTE requirements

that experimental platforms should provide, some of

which are summarised in Table 2.

The requirements are grouped in hardware resources,

information about traffic, energy-optimisation mecha-

nisms, protocols for enabling traffic engineering, man-

agement and control, and measurement of power con-

sumption and performance evaluation. Ideally, mod-

elling and simulation should reflect the behaviour of

a real system, but Table 2 provides some assumptions

and simplifications found in literature. Whilst some el-

ements may look obvious, many of them may affect the

overall assessment of the analysed solution. Testbeds

and actual measurements of performance and energy-

consumption may eliminate most of them and may re-

veal side-effects not captured during simulations.

An important requirement of traffic-engineering com-

prises the ability to gather information about the state

of the network, the needs of applications, source of elec-

tricity used to power network elements (i.e. renewable,

non-renewable) and to configure the behaviour of net-

work elements to steer traffic flows accordingly. Such

functions, embedded into data and control planes, were

traditionally performed in a decentralised manner, but

more recently many traffic-engineering schemes have

considered the centralisation of control functions en-

abled by technologies such as SDNs. SDN separates

control and data planes, which in practical terms means

that network devices perform tasks that ensure data

forwarding (i.e. the data plane) whereas management

activities (i.e. the control plane) are factored out and

placed at a central entity termed as the SDN controller.

SDN has evolved from several technologies, such as Open-

Flow, which aim to provide a remote controller with

the power to modify the behaviour of network devices

via well-defined forwarding instructions. Effort has been

Designing and Building SDN Testbeds for Energy-Aware Traffic Engineering Services 3

Table 1 GreenTE requirements and commonly adopted approaches.

GreenTE
Requirements

How Requirements are Tackled by Solutions

Simulation Testbeds

Hardware resources

Simplified and approximate
software abstractions of hardware,
energy consumption, access time

to resources

Often real equipments running in
a controlled environment

Traffic information

Commonly assumed that
information about flows can be

gathered without perturbing the
network; centrally available

Monitoring protocols coexist with
other network functions, excessive

monitoring can impact normal
traffic when sharing network

resources

Energy-optimisation
mechanisms (e.g. Link/port
switch on/off, Adaptive
Link Rate (ALR), Low
Power Idle (LPI))

Simplified models, assumptions
made when implementing support
on simulators, parameter details

not always available

Actual ALR and LPI, simulated
or actual link/port switch off/on

Network protocols (e.g.
MPLS-TE, RSVP, SPRING,
OpenFlow)

Partial implementation of
evaluated schemes, often relying

on lower-level protocols that
present already approximate

behaviour

Normally complete protocol stack,
presence of side-effects that may
be neglected by simulation tools

Management and control
Commonly assumed that the
overhead of configuration and

control is negligible

Either dedicated infrastructure
allocated to management or it

shares resources used by normal
traffic; overhead can be measured

Monitoring of power
consumption and
performance evaluation

Monitoring is performed by
gathering stats derived from

consumption models

Use of managed PDUs,
wattmeters for measuring the
consumption of power lines,
infrastructure for gathering
energy consumption stats

made towards standardising the interface between con-

troller and the data plane, generally termed as south-

bound API, and the manner the controller exposes net-

work programmability features to applications, com-

monly called northbound API. An example of such an

application is cloud infrastructure utilising a network

to provision cloud services for customers. In this case

the northbound interface may carry information about

availability of computing resources or renewable energy

in multiple data centres.

Application Intent Framework

Distributed Core

Southbound

Openflow NetConf Southbound
Interface

Intents are
translated into
instructions for

network devices

App 1 App 2 App 3
SDN

Applications

Fig. 1 ONOS Intent Framework.

SDNs simplify many of the traffic-engineering re-

quirements on gathering traffic information, perform-

ing management and control. As described in the next

section, in the GETB-SR we use ONOS, an initiative to

build an SDN controller that relies on open-source soft-

ware components, provides northbound abstractions,

and has southbound interfaces to handle OpenFlow ca-

pable and legacy devices [7]. In addition to a distributed

core that enables control functions to be executed by a

cluster of servers, ONOS provides two interesting north-

bound abstractions, namely the Intent Framework and

the Global Network View. The intent framework, de-

picted in Figure 1, allows an application to request a

network service without knowledge of how the service

is performed. An intent manifested by an application

is converted into a series of rules and actions that are

applied to network devices. An example of intent is set-

ting up an optical path between switches A and B with

amount C of bandwidth. The global network view, as

the name implies, provides an application with a view

of the network and APIs to program it. The applica-

tion may treat the view as a graph and perform sev-

eral tasks that are crucial to traffic engineering, such

as finding shortest paths. ONOS provides an applica-

tion that partially implements SPRING, a framework

to enable segment routing currently being standardised

by IETF1. SPRING provides features for traffic engi-

1 https://tools.ietf.org/wg/spring/

https://tools.ietf.org/wg/spring/

4 Marcos Dias de Assunção1 et al.

neering as it enables an application to specify paths for

data flows while avoiding certain network links.

Simultaneously, in the GETB-AR we use Ryu, a

component-based software defined networking frame-

work aimed at creating new network management and

control applications [6]. It provides southbound API

to control network equipment using various protocols

(OpenFlow versions 1.0, 1.2 1.3, 1.4 and 1.5, Netconf

or OF-config). Ryu also defines northbound API for de-

ploying SDN applications such as energy-aware traffic

engineering mechanisms. Applications in Ryu are soft-

ware entities running in individual threads and send-

ing asynchronous events to one another [36]. The Ryu

controller was chosen for the GETB-AR testbed as an

alternative solution to the ONOS framework used for

GETB-SR and to acquire wide experience on configu-

ration and implementation of various SDN controllers.

Each application in Ryu has a dedicated FIFO queue

to hold incoming events while appropriate event han-

dlers are called for various event types. The application

programming model is depicted in Figure 2. The po-

tential of the Ryu framework is proved by commercial

deployments in NTT proprietary cloud data centres.

Ryu-manager process

Data path thread

Data path thread

Event queue

Event

Event loop thread Event handlerCall

Retrieve an event

Event

EventEvent

Fig. 2 Application architecture within Ryu framework [36].

3 Proof-of-Concept Platforms

We built two proof-of-concept testbeds: GrEen Traf-

fic engineering testBed - Segment Routing (GETB-SR)

and The GrEen Traffic engineering testBed - Anycast

Routing (GETB-AR). The aim of both testbeds is to

thoroughly investigate energy-aware traffic engineering

approaches proposed in our previous work but evalu-

ated only using discrete-event simulation. Additionally,

based on the conducted research, we present challenges

faced while implementing energy-aware traffic engineer-

ing mechanisms as SDN services in testbed environ-

ment.

3.1 GrEen Traffic engineering testBed – Segment

Routing (GETB-SR)

Figure 3 illustrates the GETB-SR platform and its main

components, depicting the deployment of switches, an

SDN controller and applications. At smaller scale, the

platform comprises components that are common to

other infrastructures set up for networking research [27,

29,37]. Moreover, we attempt to employ software used

at the Grid5000 testbed [13]2 to which we intend to

integrate the platform.

To use the platform, a user requests: a slice or a

set of cluster nodes to be used by an application as

virtual switches or serving as traffic sources and sinks,

an OS image to be deployed and a network topology

to be used (step 1). We crafted several OS images so

that nodes can be configured as SDN controllers and

OpenFlow software switches, as discussed later. A bare-

metal deployment system is used to copy the OS images

to the respective nodes and configure them accordingly

[25], whereas a Python application configures VLANs

and interfaces of the virtual switches emulating optical

switches interconnecting the nodes in order to create

the user-specified network topology.

Once the nodes and the network topology are con-

figured, the user deploys his or her application (step 2 in

Figure 3). All cluster nodes are connected to enclosure

Power Distribution Units (ePDUs)3 that monitor the

power consumption of individual sockets [35]. This in-

formation on power consumption may be used to eval-

uate the efficiency of an SDN technique (step 3). The

data plane comprises two types of OpenFlow switches,

namely software-based and hardware-assisted. The for-

mer consists of a vanilla OVS [34], whereas the lat-

ter OVS offloads certain OpenFlow functionalities to

NetFPGA cards [3]4. We use a custom OpenFlow im-

plementation for NetFPGAs, initially provided by the

Universität Paderborn (UPB) [4], that performs certain

OpenFlow functions in the card, e.g. flow tables, packet

matching against tables, and forwarding.

Although the NetFPGA cards are by default pro-

grammed as custom OpenFlow switches, a user can re-

program them for different purposes by copying a bit-

stream file to their flash memories and rebooting the

system. The current testbed comprises eight servers –

five Dell R720 servers equipped with a 10Gbps Ether-

net card with 2 SPF+ ports each and three HP Z800

servers with NetFPGA cards with 4 SPF+ ports each.

All servers also have multiple 1Gbps Ethernet ports.

2 https://www.grid5000.fr
3 http://www.eaton.com/Eaton/index.htm
4 http://netfpga.org/site/#/systems/3netfpga-

10g/details/

https://www.grid5000.fr
http://www.eaton.com/Eaton/index.htm
http://netfpga.org/site/#/systems/3netfpga-10g/details/
http://netfpga.org/site/#/systems/3netfpga-10g/details/

Designing and Building SDN Testbeds for Energy-Aware Traffic Engineering Services 5

ONOS

Energy-Aware
Anycast Routing

Segment
Routing

Open vSwitch

Network Cards

Hardware Assisted
Open vSwitch

NetFPGA Cards

OpenFlow Protocol

Energy Aware
Traffic Engineering

Module

Managed ePDU

Bare-metal
Deployment System

User

1

2

Power Consumption
Measurement

Resources connected to
managed ePDUs

Deployment of
OS images and

topology

Power consumption
information

3

Deploy SDN
Application

Specify Network
Infrastructure

Collect energy
consumption data

......

Fig. 3 Overview of the GETB-SR platform.

The SPF+ ports have optical transceivers and are all

interconnected by a Dell N4032F L3 switch whereas two

1Gbps Ethernet ports of each server are connected to a

Dell N2024 Ethernet switch. The platform is depicted

in Figure 4. This configuration enables testing multiple

network topologies.

Fig. 4 The GETB-SR platform.

The infrastructure and the use of ONOS satisfy some

requirements of energy-aware traffic engineering, namely

providing actual hardware, allowing for traffic informa-

tion to be gathered, using actual network protocols,

enabling the overhead of control and management to

be measured, and monitoring the power consumption

of equipment. Some energy-optimisation mechanisms,

however, are still emulated, such as switching off/on

individual switch ports. Although the IP cores of the

Ethernet hardware used in the NetFPGA cards en-

able changing the state of certain components, such as

switching off transceivers, that would require a com-

plete redesign of the employed OpenFlow implementa-

tion. It has therefore been left for future work.

3.2 GrEen Traffic engineering testBed - Anycast

Routing (GETB-AR)

The GETB-AR testbed was placed on an 8-core 2.83GHz

server running VMware ESXi 5.5, with maximum shared

allocation of 20GB RAM for all machines. Virtual disks

of the testbed machines were placed on a local RAID

10 array of 4x15k RPM disks. All machines run with

512MB vRAM, except for the VM hosting the SDN con-

troller, which has 2048MB vRAM. VM disks are thin-

provisioned 16GB linked clones. There are 14 machines

running OVS switches (to support NSFNet topology

and validate results presented in previous work [14]).

All machines are connected with one vNIC to a man-

agement network allowing for remote access and 7 NICs

for testbed connectivity. A set of 21 vSwitches was cre-

ated for connectivity among OVS machines. An addi-

tional set of 14 vSwitches and a set of 14 client machines

were created to provide user traffic. A separate set of

6 Marcos Dias de Assunção1 et al.

14 vSwitches and a set of 14 machines were created to

provide simulated Data Centre (DC) facilities. Thus, all

the testbed traffic is being exchanged within the single

physical server.

A Ryu SDN controller application was deployed to

handle traffic in accordance with the energy-aware any-

cast strategies introduced in previous work [14]. Accu-

rate routing of both anycast and unicast traffic relies

on up-to-date network data including topology, avail-

able resources and other control information gathered

from network nodes, and user input via a REST API

interface. The acquired data is used to create a net-

work graph continuously updated by the controller’s

topology discovery module. When a new connection is

initialised, its first packets are forwarded to the con-

troller and thoroughly examined to determine unique

flow identifiers based on L3/L4 headers. The best path

is calculated using one of the available algorithms tak-

ing into account available destination nodes, resource

constraints and active routing policy. Flow entries are

then inserted into each intermediate node’s flow table,

causing all subsequent packets that belong to the same

flow to be forwarded automatically to an appropriate

destination, without further notice of the network con-

troller. The southbound interface uses the OpenFlow

protocol version 1.3, enabling cooperation with compli-

ant hardware switches. Figure 5 illustrates the GETB-

AR platform. To model optical network properties we

used MPLS tunnels that reserve assumed amount of

resources on the links along the whole path. The afore-

mentioned mechanisms regard to the management and

control as well as traffic information GreenTE require-

ments listed in Table 2.

Future extensions. In the current GETB-AR testbed

configuration, information about the type of power used

at each DC is provided manually through the SDN con-

troller northbound API extended in our testbed. Fur-

ther development is envisioned to acquire information

about the percentage of green energy used in all the

nodes automatically. This task is similar to the discov-

ery of network topology where Link Layer Discovery

Protocol is utilised along with an appropriate SDN con-

troller extension. We consider two approaches to imple-

ment this function.

The first one, the Power Grid Orchestration (PGO),

assumes that all nodes have an interface to the power

grid network, which allows to estimate the share of re-

newable energy in the energy supplied to the node. This

additional information has to be forwarded to the SDN

controller with the use of an appropriate Open Flow

protocol extension. The SDN controller is supposed to

update its database and modify the behaviour of the

traffic engineering applications. The main advantage of

PGO is the automatic acquisition of information on the

power status of all network nodes and possible use of

this knowledge for traffic engineering purposes.

The second concept, called the Open Stack Orches-

tration (OSO), involves SDN integration in the area

of green networking with OpenStack software. In this

case, the information about the power status of all DC

nodes will come from the OpenStack module respon-

sible for efficient utilisation of the controlled resources.

This is possible due to the use of energy-aware interface

between SDN and OpenStack. The OpenStack software

may estimate and distribute a synthetic index based

on many factors, including the share of green energy

consumed in the node, current price of energy, utilisa-

tion of computing resources, the number and complex-

ity of computing tasks scheduled in a given time scale

and many others. The main disadvantage of this solu-

tion is that distribution of a single index value for each

DC node might be insufficient for other traffic engineer-

ing applications. Both approaches to gather node power

conditions are of course not exclusive and may be used

together.

Another possible extension of GETB-AR testbed is

to implement sample network services. We work to-

wards implementing security mechanisms in a cloud

computing infrastructure composed of public and pri-

vate resources. Our research in the area of secure hybrid

cloud infrastructure [28] is coordinated with the GETB-

AR design, implementation and configuration. Public

cloud infrastructure is composed of all DC nodes es-

tablished in the GETB-AR testbed, private cloud com-

puting resources are represented by all virtual machines

attached to network nodes. Some experiments and eval-

uation of an ongoing work within the secure green net-
working testbed are planned for near future.

4 Green Traffic Engineering Use Cases

In this section, we discuss two energy-aware traffic-

engineering approaches. The first uses segment routing

to reroute traffic in order to free links that henceforth

become candidates to be switched off, whereas the sec-

ond establishes paths for anycast requests considering

the type of energy used to power target data centres.

A crucial contribution of this section is the compari-

son of results obtained in the testbeds with those using

discrete-event simulations.

4.1 Segment-Routing Service

Our strategies for routing data flows so that under-

utilised links may be freed and powered off [19] stem

Designing and Building SDN Testbeds for Energy-Aware Traffic Engineering Services 7

VMware ESXi

User

UI REST API

Energy-Aware
Anycast Routing

Network
State DB

Ryu SDN Controller

Anycast Strategies Configuration Traffic Status
Notifications

Linux Host

Traffic
Generator

Linux Host

Traffic
Generator

Linux Host

Traffic
Generator

Open vSwitch Open vSwitch Open vSwitch

Dataplane

VM
Deployment

VM
Deployment

Traffic
Supervisor

Connection
Requests

OpenFlow

VM
Deployment

Fig. 5 Overview of the GETB-AR platform.

from the observation that networks are seldom highly

utilised, and that most traffic often follows diurnal and

weekly patterns. The SPRING framework is used be-

cause unlike in MultiProtocol Label Switching (MPLS)-

TE, link and switch IDs called Segment Identifiers (SIDs),

are global within an autonomous domain, hence allow-

ing for source-routing. In this way, a flow may be clas-

sified at an ingress router and steered through a given

path. This section describes the service life cycle and

discusses issues that the testbed enables us to identify

and investigate.

4.1.1 Service Life Cycle

Manager

Config. Listener
Energy-Aware

Module Flow-Rule
Population

Create

Register flow-rule
listener

loop [while service is running]

check link
utilisation

find candidates for
switch off/on

Update flow rules

Populate default
flow rules

Fig. 6 Start phase of the segment-routing application.

The service, which is a custom version of the ONOS

segment-routing application, uses a series of ONOS com-

ponents, including its topology information, flow-rule

services, and traffic flow objectives. As shown in Fig-

ure 6, a service Manager triggers the creation of re-

maining components when it is launched. The energy-

aware module, which comprises the proposed traffic-

engineering algorithms, registers a flow-rule listener to

measure flow traffic and link utilisation. The configura-

tion component loads a file that specifies how switches

are connected to local networks; information which is

then augmented by a topology discovery process. Once

the topology is updated, default shortest-path rules are

created to guarantee that hosts from a network con-

nected to a switch may reach hosts linked to another

switch. A rule consists of a forwarding objective com-

prising a traffic selector and a treatment. Selectors and

treatments result in sets of OpenFlow instructions that

are passed to the switches. MPLS push/pop forward-

ing objectives are created for switches that do not have

ports in the source and destination segments — i.e.

are neither ingress nor egress switches — and normal

IP forwarding objectives are built otherwise. While the

service is running, the energy-aware module is notified

about changes in topology as well as link utilisation,

and periodically evaluates whether there are links to

switch off/on. If changes in the link availability are re-

quired, the energy-aware module requests a flow-rule

update to the Flow-Rule Population module.

8 Marcos Dias de Assunção1 et al.

4.1.2 GreenTE Issues

Although switching off underused links may be effec-

tive from energy efficiency perspective, sudden bursts

in traffic may lead to congestion, hence requiring links

to be made available. Our previous work [18] proposed

algorithms that may react rapidly to traffic bursts by

switching links back on when traffic increases. Perfor-

mance evaluation using discrete-event simulation and

UDP-like traffic has shown that the approach success-

fully reacts to traffic bursts without incurring consider-

able packet loss. It is assumed, however, that the SDN

controller gathers the information about link utilisation

from switches every second and that a decision to power

a given link back on may be taken and enforced quickly.

Fig. 7 ONOS GUI showing a data flow avoiding the shortest
path.

We performed a simple test and measured the time

needed for a controller to decide whether a link should

be switched on. A small network topology was consid-

ered, as depicted in Figure 7. The Figure also shows
the ONOS graphical interface and a data flow (green

lines). The network starts with a minimal number of

links turned on, forming a spanning tree, and with a

TCP flow that nearly exceeds the utilisation threshold,

above which the controller decides to turn on more links

to handle congestion. A second flow is then injected,

thus exceeding the threshold and forcing the controller

to switch links on; we measure the time from flow in-

jection to a switch-on decision. In the simulation, the

decision takes on average 1.075 seconds, with most of

the time spent gathering information on link utilisation.

In the testbed, the time is on average 20% higher than

in simulation.

We notice that the difference in results between sim-

ulation and real testbeds are generally due to simu-

lations assuming zero delay at multiple parts of the

processing pipeline and the manner network events are

handled. While a single delay simplification would have

marginal impact on the results, multiple delays along

the packet processing pipeline can account for up to

30% difference in the time to react to changes. Exam-

ples of delay simplifications during discrete-event sim-

ulations include: instantaneous insertion of forwarding

rules into the data path, immediate update of routing

tables, fast propagation of flow counters from the simu-

lated hardware ports to the software of the SDN switch,

and instantaneous processing of IP UDP/TCP packets.

Generally, the only delay properly handled by a simu-

lator is packet queueing time.

Moreover, existing work has already shown that up-

dating the data path forwarding rules is slow in current

commercial SDN switches [24]. Google employees re-

port5 that their SDN-based WAN had an outage due

to this issue on propagation of forwarding rules. Im-

provements can be made in the simulation software to

account for some delay, and in the hardware design it-

self to reduce the time to propagate rules.

Other issues that we investigated concern the stabil-

ity of the algorithms and the impact of traffic re-routing

on TCP flows. Unlike traditional networks where changes

in link availability are sporadic, under GreenTE fre-

quent changes may be the rule. Re-routing TCP flows,

however, may lead to serious performance degradation

due to segments arriving out of order, which in turn

result in multiple duplicate ACKs and hence triggering

the TCP congestion algorithms at source. Even though

the algorithms in the simulator mimic the behaviour

of their corresponding theoretical models, they differ

from the actual network software implementations pro-

vided by certain operating systems. The Linux ker-

nel, for instance, includes several non-standard opti-

misations [38]. While simulations highlighted that re-

routing TCP flows severely impacts the throughput of

the transported TCP flows, empirical evaluation on the

testbed demonstrated almost no impact under the same

conditions. We believe that existing work that wraps

real network software stack into simulators6 may help

minimise this issue.

4.2 Energy-Aware Anycast Routing

One of the approaches to green networking is based on

using energy produced from renewable energy sources

as this results in carbon footprint reduction. This ap-

proach is especially important in the context of net-

works connecting Data Centres (DCs). Providing nu-

merous cloud computing services requires huge com-

puting power, which in turn, results in enormous power

requirements by DCs. Therefore, powering DCs with

5 https://atscaleconference.com/videos/lessons-

learned-from-b4-googles-sdn-wan/
6 http://www.wand.net.nz/~stj2/nsc

https://atscaleconference.com/videos/lessons-learned-from-b4-googles-sdn-wan/
https://atscaleconference.com/videos/lessons-learned-from-b4-googles-sdn-wan/
http://www.wand.net.nz/~stj2/nsc

Designing and Building SDN Testbeds for Energy-Aware Traffic Engineering Services 9

renewable energy is expected to reduce CO2 emission

significantly. In hybrid power networks, selected DCs

are powered using energy from renewable sources while

the rest uses energy obtained from conventional sources.

As one of the paradigms of cloud computing is to offer

the same services in different DCs at the same time,

it is possible to choose one of many possible locations

to provide the requested service. A corresponding rout-

ing scheme is called anycast [20]. Another important

feature of cloud computing is to offer services in an on-

demand fashion. That is why incoming requests are un-

predictable and the underlying network must be inves-

tigated under a dynamic traffic scenario [20]. Therefore,

features like global view of the current network topol-

ogy and allocated paths as well as possibility to dy-

namically handle incoming requests are essential. Both

features are ensured by the SDN idea with a centralised

controller. The GETB-AR testbed is used to evaluate

anycast strategies that aim to reduce greenhouse gases

emission by processing resource-intensive requests in

data centres powered from renewable energy sources.

The anycast routing problem consists of a graph

G(V,E) representing the physical network, where V

is the set of nodes and E is the set of network links.

A subset of VDC ⊂ V comprises data centres that

serve user requests and VC ⊂ V denotes source switch-

es/routers to which users are connected. VgDC com-

prises green data centres that are powered by renewable

energy sources, whereas VbDC consists of brown data

centres that use traditional energy sources. The follow-

ing relations are met: VgDC

⋂
VbDC = ∅, VgDC

⋃
VbDC =

VDC , VDC

⋂
VC = ∅ and VDC

⋃
VC = V . The strate-

gies aim to prioritise the use of VgDC while respecting

several connectivity and availability constraints. Figure

8 illustrates the virtual infrastructure and topology de-

veloped on the GETB-AR platform.

4.2.1 Anycast strategies

In previous work [14], we proposed three anycast rout-

ing strategies (randomGreen, closestGreen and closes-

tGreenWithPenalty) focused on reducing the carbon

footprint. All the strategies require very limited addi-

tional control information and hence may be easily im-

plemented using a centralised network controller con-

sistent with the idea of SDN. The proposed strategies

are compared to the single anycast strategy, which is

the base reference strategy, well known and widely de-

scribed in literature. However, the general idea behind

the proposed heuristics is to provide some kind of green

DC preference while choosing a destination for an any-

cast request and, at the same time, consider multi-

ple DCs as targets for the request to improve network

performance. Thus, to ensure a comprehensive assess-

ment of the three proposed strategies, we also provided

two additional reference strategies, random and clos-

est, which consider multiple DCs as targets for an any-

cast request but do not prefer green DCs over brown

ones. In this paper we provide only short descriptions

of those strategies, but detailed information along with

pseudocode can be found in previous work [14].

In the single strategy an anycast request is served

by first randomly choosing a single destination d within

VDC . Then it checks whether the wavelength continu-

ity constraint can be met by any of the three alter-

nate optical paths between the source and randomly

selected destination node. If a lightpath is available be-

tween the source s ∈ VC and the destination d, then

the request is accepted; otherwise it is rejected. In the

random strategy the network controller iteratively tries

to establish the lighpath between s ∈ VC and a random

d ∈ VDC . The strategy ends when the first available d

is found or none of the possible destinations is avail-

able after examining all possible destinations. In case

of the closest strategy, the closest (in the hop manner)

destination d is chosen and the lightpath is established

between s and d. If none of d ∈ D is available then the

request is rejected. In the randomGreen the SDN con-

troller iteratively tries to establish the lighpath between

s and a random d ∈ VgDC . If all d ∈ VgDC are tried

without success then the same scheme is performed for

d ∈ VbDC . In the closestGreen strategy the network

controller performs operations analogous to the closest

strategy for all d ∈ VgDC . If none of d ∈ VgDC is avail-

able then the SDN controller repeats the same opera-

tion for all d ∈ VbDC . If none of d ∈ D is available then

the request is rejected. The closestGreenWithPenalty

strategy works analogously to the closest strategy but

with one significant difference. The distance from s to

d ∈ VbDC is multiplied by the penalty factor, where

the penalty is an input parameter of the strategy. The

closestGreenWithPenalty strategy with penalty = 1.0

is equivalent to the closest strategy.

To sum up, the three proposed strategies (random-

Green, closestGreen and closestGreenWithPenalty) cre-

ate an opportunity to reduce carbon footprint by favour-

ing green DCs over brown ones. However, as a side ef-

fect, the average lightpath length and resource utilisa-

tion may significantly increase in case of randomGreen

and closestGreen strategies, where green DCs are firmly

prioritised. Thus, the closestGreenWithPenalty strat-

egy was proposed to flexibly balance the trade-off be-

tween carbon footprint reduction and the average light-

path length. The higher value is assigned to the penalty

parameter the more green DCs are preferred over brown

ones and, at the same time, the higher is the average

10 Marcos Dias de Assunção1 et al.

Fig. 8 Overview of the evaluated scenario.

lightpath length. Each of the three proposed strate-

gies is expected to reduce the blocking probability of

anycast requests in comparison to the single strategy.

Thus, for a comprehensive assessment, the impact of

the proposed strategies on network performance will be

additionally investigated in comparison to the auxil-

iary reference strategies, random and closest. The clos-

est strategy is especially significant in the context of

network performance as it is expected to ensure the

shortest average lightpath length and thus the lowest

network resource occupancy. We use a simple shortest

path (least hop) routing algorithm and firstfit wave-

length assignment with k-alternate paths [39].

The implementation of anycast strategies is an es-
sential part of the controller’s application and relies on

its knowledge of network state and available resources.

The network graph created by the topology discovery

module comprises vertices and edges representing net-

work nodes and network links. Neighbour adjacency

is discovered by exchange of LLDP packets containing

unique identifiers. Each vertex holds node-specific data

including its type (brown DC, green DC, client) and in-

terface configuration. Information about available and

reserved wavelengths is held by graph edges. This infor-

mation, along with penalty values and flow-specific pa-

rameters is utilised in the process of path computation.

Once a packet in message is received by the controller,

its contents are extracted to determine ingress node and

flow parameters, namely IP addresses and TCP/UDP

port numbers. After an optimal path, with regard to

active anycast strategy, is chosen by the routing algo-

rithm, OpenFlow instructions are passed to each switch

along the desired flow route. Each intermediate node

is supplied with two flow entries specifying appropriate

output ports to enable bidirectional transmission. Once

the path is set up, it may be removed anytime, allowing

for flexible network reconfiguration.

4.2.2 Results

Two metrics were used to asses the anycast strate-

gies. The first one estimates carbon footprint and is

the average ratio of the power consumed from non-

renewable sources to the amount of DC traffic switched

in all DCs (brownKiloWatts/(Gb/s)). Thanks to this

normalisation we obtain comparable results under dif-

ferent traffic loads. The second metric is the blocking

probability, calculated as the ratio of rejected requests

to all requests. An external traffic generator module
was implemented to evaluate performance of anycast

strategies in the testbed environment. Each of the 14

hosts runs a client application able to generate multiple

TCP/UDP streams using the iperf tool. Both anycast

and unicast connections are set up on demand while

compliance with traffic parameters described in previ-

ous work [14] is enforced by a central supervisor gener-

ating relevant connection requests. The SDN controller

collects statistics of each flow, e.g. transmission time,

end nodes and assigned resources. Data regarding the

complete routing and network state is available to the

controller while end of transmission timestamps are ob-

tained directly from end nodes. A dedicated controller

module was implemented to gather and store historical

data about flows. As a result of detailed flow database

analysis, both indicators, e.g. brownKiloWatts/(Gb/s)

and blocking probability were calculated.

Figures 9 and 10 present carbon footprint of the

analysed anycast strategies with different data centres

indicated as green. In each figure, the left-hand graph

Designing and Building SDN Testbeds for Energy-Aware Traffic Engineering Services 11

presents results obtained in the discrete-event simula-

tor and the right-hand one shows results obtained in

the GETB-AR testbed. Figures 11 and 12 show the

corresponding total blocking probabilities.

The main differences between results obtained in

discrete-event simulations and GETB-AR testbed are

related to the absolute values. Additionally, differences

between particular strategies are less pronounced in the

testbed comparing to the simulations. The reason be-

hind such observations is a difference in modelling of

network resources in both environments. Finally, results

obtained in GETB-AR testbed oscillate between differ-

ent network loads while this effect cannot be observed

for simulation-based results. It is a result of more real-

istic approach to generation of user requests in virtual

machines instead of simulating such requests as pro-

gramming objects in simulation environment. All of the

issues indicate that any simulation-based conclusions

should always be drawn with proper caution. However,

those minor disparities do not affect a general conclu-

sion that preliminary assessment of anycast strategies

performed in discrete-event simulations is proved to be

true with results obtained in the GETB-AR testbed.

Simulation results show that the three proposed strate-

gies randomGreen, closestGreen and closestGreenWith-

Penalty may significantly reduce CO2 emission in com-

parison to all reference strategies, and decrease blocking

probability in comparison to the single strategy. Fur-

thermore, in each simulation scenario the closestGreen-

WithPenalty strategy retains network performance at a

level comparable with the closest strategy, which is ex-

pected to provide the lowest network utilisation. Addi-

tionally, the penalty parameter allows the closestGreen-

WithPenalty strategy to elastically balance the trade-

off between carbon footprint reduction and network

performance.

Several issues not observed in discrete-event simu-

lations needed to be addressed during development and

deployment of the testbed. These were mainly related to

detection and assessment of network events and limited

computation resources available to the controller and

switch software causing packet processing delays. While

a connection setup is relatively easily detected by the

controller when packets with an unknown flow identifier

are received, it is difficult to tell whether the connec-

tion is still active at a particular moment. Considering a

variety of services being present on the network, there

are no common measures such as timeouts indicating

expired connections. Although TCP flows may be mon-

itored for presence of FIN and RST flags, such method

is not suitable for UDP streams. Still, instant deallo-

cation of unused resources and network state database

update is essential for energy-aware routing algorithms

to work efficiently. One of the proposed solutions in-

volved applying idle timeouts to handle expired flows.

However, such approach could cause several connec-

tions to be disrupted prematurely or allocated resources

to be freed belatedly. To alleviate the issue, additional

controller REST API calls were implemented for client

application to notify controller of connection teardown

immediately after the end of transmission. This, how-

ever, requires client applications to be aware of flow

setup mechanism and additional control modules to be

implemented by their developers.

Another issue faced in the testbed environment was

caused by limited performance of the SDN controller.

Although satisfactory switching rates may be achieved

by Open vSwitch software deployed on VMWare virtual

machines, bursty traffic may drain the controller’s re-

sources and make it a network bottleneck. Considering

the time required to parse incoming packet in Open-

Flow message, calculate efficient path and push flow

information to all intermediate flow tables, additional

precautions should be taken to prevent inappropriate

handling of network streams. This includes additional

mechanisms ensuring all flows to be detected only on

reception of their initial packet and packet out messages

being sent in the correct order. Again, the issue is con-

sistent with GreenTE requirement on management and

control presented in Table 2.

5 Related Work

Several solutions have been proposed to make networks

more energy efficient, comprising improvements in used

materials, encoding and decoding techniques, power ef-

ficient transceivers and other improvements in network

equipment. Whilst our algorithms may benefit from im-

provements in hardware and transmission, we focus on

techniques that operate at the routing level. In this

area, solutions range from putting network interfaces

into sleep mode [23] to increasing idle periods of certain

links by changing flow paths [41]. A detailed review of

the state of the art on this topic is presented in previous

work [19].

In the present work, we focused on describing the

importance of a platform to evaluate energy-aware traffic-

engineering algorithms. Infrastructure for research and

development of distributed systems have been estab-

lished over the years [13,33,2], including platforms for

SDN solutions [12] and SDN testbeds [27,29,37,32].

Our approach and previously described platforms have

many similarities, but we focus on providing an infras-

tructure that may be used for both evaluating SDN-

based solutions and assessing their energy efficiency.

12 Marcos Dias de Assunção1 et al.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0
1
0

2
0

Offered DC load

B
ro

w
n

k
W

p
e
r

1
G

b
/
s

o
f

D
C

re
q
u
e
st

s

Obtained using Simulations

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0
1
0

2
0

Offered DC load

B
ro

w
n

k
W

p
e
r

1
G

b
/
s

o
f

D
C

re
q
u
e
st

s

Obtained in GETB-AR

single random randomGreen

closest closestGreen closestGreenWithPenalty (penalty=1.9)

Fig. 9 Brown kilowatts needed to handle 1 Gb/s of DC requests in the NSF network with VgDC ∈ {4, 11}.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0
1
0

2
0

3
0

Offered DC load

B
ro

w
n

k
W

p
e
r

1
G

b
/
s

o
f

D
C

re
q
u
e
st

s

Obtained using Simulations

1 1.2 1.4 1.6 1.8 2 2.2 2.4

1
0

2
0

3
0

Offered DC load

B
ro

w
n

k
W

p
e
r

1
G

b
/
s

o
f

D
C

re
q
u
e
st

s

Obtained in GETB-AR

single random randomGreen

closest closestGreen closestGreenWithPenalty (penalty=2.9)

Fig. 10 Brown kilowatts needed to handle 1 Gb/s of DC requests in the NSF network with VgDC ∈ {9, 11}.

Most of research in the area of testbed-based eval-

uation of energy-aware mechanisms is focused on data

centres. For example, a green DC testbed has been pro-

posed in previous work [21]. It adjusts the workload

handling process to the availability of solar and wind

energy and optimises air conditioning with regard to the

outside air temperature. A platform for energy-aware

analysis of an internal DC network was also proposed

[40], where the authors combined hardware with emula-

tion techniques and proposed an extension to the Open-

Flow protocol in order to measure energy consump-

tion of infrastructure components as well as link oc-

cupancy. Another extension to the OpenFlow protocol

was also evaluated in a testbed environment [42], where

the aim was to reduce energy consumption by turning

off switches and their ports in an internal DC network

along with changing clock frequency in the equipment.

6 Conclusions

This paper discussed challenges towards building testbeds

and requirements imposed on those testbeds and SDN

platforms for validating and evaluating energy-aware

traffic-engineering algorithms. We presented two SDN

applications: the first one uses segment routing to reroute

traffic in order to free certain network links which can

then be switched off, whereas the second establishes

paths for anycast requests considering the type of en-

ergy used to power target data centres. We also il-

lustrated the use of the testbeds. Specifically, in the

Designing and Building SDN Testbeds for Energy-Aware Traffic Engineering Services 13

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0
0
.1

0
.2

Offered DC load

T
o
ta

l
b
lo

ck
in

g
p
ro

b
a
b
il
it

y

Obtained using Simulations

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0
.1

0
.2

Offered DC load

T
o
ta

l
b
lo

ck
in

g
p
ro

b
a
b
il
it

y

Obtained in GETB-AR

single random randomGreen

closest closestGreen closestGreenWithPenalty (penalty=1.9)

Fig. 11 Total blocking probability of both traffic types in the NSF network with VgDC ∈ {4, 11}.

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0
0
.1

0
.2

0
.3

Offered DC load

T
o
ta

l
b
lo

ck
in

g
p
ro

b
a
b
il
it

y

Obtained using Simulations

1 1.2 1.4 1.6 1.8 2 2.2 2.4

0
.1

0
.2

0
.3

Offered DC load

T
o
ta

l
b
lo

ck
in

g
p
ro

b
a
b
il
it

y

Obtained in GETB-AR

single random randomGreen

closest closestGreen closestGreenWithPenalty (penalty=2.9)

Fig. 12 Total blocking probability of both traffic types in the NSF network with VgDC ∈ {9, 11}.

GETB-SR testbed we discussed challenges on improv-

ing the stability of routing algorithms and TCP flows

in networks employing GreenTE mechanisms, and by

utilising the GETB-AR testbed we compared effective-

ness of energy-aware anycast strategies evaluated in

the testbed and contrasted it with results obtained us-

ing discrete-event simulation. We also presented issues

specific of testbed environment along with challenges

toward deployment of green anycast strategies in the

GETB-AR.

Acknowledgments

This work was financially supported by the CHIST-

ERA ERA-Net SwiTching And tRansmission (STAR)

project [1].

References

1. CHIST-ERA STAR (SwiTching And tRansmission)
project. http://www.chistera.eu/projects/star

2. GENI: Exploring networks of the future. http://www.

geni.net

3. Netfpga 10g. http://netfpga.org

4. The netfpga-10g upb openflow switch. https://github.

com/pc2/NetFPGA-10G-UPB-OpenFlow

5. OMNeT++ Discrete Event Simulator. https://omnetpp.

org/

6. Ryu sdn framework. http://osrg.github.io/ryu/

7. Introducing ONOS: A SDN network operating system
for service providers. Whitepaper, Open Networking
Lab ON.Lab (2014). URL http://onosproject.org/wp-

content/uploads/2014/11/Whitepaper-ONOS-final.pdf

http://www.chistera.eu/projects/star
http://www.geni.net
http://www.geni.net
http://netfpga.org
https://github.com/pc2/NetFPGA-10G-UPB-OpenFlow
https://github.com/pc2/NetFPGA-10G-UPB-OpenFlow
https://omnetpp.org/
https://omnetpp.org/
http://osrg.github.io/ryu/
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf
http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf

14 Marcos Dias de Assunção1 et al.

8. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz,
R.H., Konwinski, A., Lee, G., Patterson, D.A., Rabkin,
A., Stoica, I., Zaharia, M.: Above the clouds: A Berkeley
view of Cloud computing. Tech. Report UCB/EECS-
2009-28, Electrical Engineering and Computer Sciences,
University of California at Berkeley, Berkeley, USA
(2009)

9. Assuncao, M.D., Carpa, R., Lefevre, L., Gluck, O.: On
designing sdn services for energy-aware traffic engineer-
ing. In: 11th EAI International Conference on Testbeds
and Research Infrastructures for the Development of Net-
works and Communities (TridentCom’16) (2016)

10. Atzori, L., Iera, A., Morabito, G.: The internet of things:
A survey. Computer Networks 54(15), 2787–2805 (2010)

11. Awduche, D., Chiu, A., Elwalid, A., Widjaja, I., Xiao,
X.: Overview and principles of internet traffic engineer-
ing. RFC 3272 (Informational) (2002). URL http:

//www.ietf.org/rfc/rfc3272.txt

12. Banikazemi, M., Olshefski, D., Shaikh, A., Tracey, J.,
Wang, G.: Meridian: an SDN platform for cloud network
services. IEEE Communications Magazine 51(2), 120–
127 (2013)

13. Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez,
F., Jeannot, E., Jégou, Y., Lantéri, S., Leduc, J., Melab,
N., Mornet, G., Namyst, R., Primet, P., Quetier, B.,
Richard, O., Talbi, E.G., Iréa, T.: Grid’5000: a large scale
and highly reconfigurable experimental Grid testbed. Int.
Journal of High Performance Computing Applications
20(4), 481–494 (2006)

14. Borylo, P., Lason, A., Rzasa, J., Szymanski, A., Ja-
jszczyk, A.: Anycast Routing for Carbon Footprint Re-
duction in WDM Hybrid Power Networks with Data Cen-
ters. In: IEEE Int. Conf. on Communications (ICC 2014),
pp. 3714–3720. IEEE (2014)

15. Borylo, P., Lason, A., Rzasa, J., Szymanski, A., Ja-
jszczyk, A.: Fitting Green Anycast Strategies to Cloud
Services in WDM Hybrid Power Networks. In:
IEEE Global Communications Conference (GLOBE-
COM 2014), pp. 2592–2598. IEEE (2014)

16. Borylo, P., Lason, A., Rzasa, J., Szymanski, A., Ja-
jszczyk, A.: Energy-Aware Fog and Cloud Interplay Sup-
ported by Wide Area Software Defined Networking. In:
IEEE Int. Conf. on Communications (ICC 2016). IEEE,
Kuala Lumpur, Malaysia (2016)

17. Borylo, P., Lason, A., Rzasa, J., Szymanski, A., Ja-
jszczyk, A.: Green Cloud Provisioning Throughout Co-
operation of a WDM Wide Area Network and a Hybrid
Power IT Infrastructure. Journal of Grid Computing
(Springer) 14(1), 127–151 (2016)

18. Carpa, R., Dias de Assuncao, M., Glück, O., Lefevre, L.,
Mignot, J.C.: Responsive Algorithms for Handling Load
Surges and Switching Links On in Green Networks. In:
IEEE Int. Conf. on Communications (ICC 2016). Kuala
Lumpur, Malaysia (2016)

19. Carpa, R., Gluck, O., Lefevre, L.: Segment routing based
traffic engineering for energy efficient backbone networks.
In: IEEE Int. Conf. on Advanced Networks and Telecom-
munications Systems (ANTS 2014), pp. 1–6 (2014)

20. Develder, C., Leenheer, M.D., Dhoedt, B., Pickavet, M.,
Colle, D., Turck, F.D., Demeester, P.: Optical Networks
for Grid and Cloud Computing Applications. Proceed-
ings of the IEEE 100(5), 1149–1167 (2012)

21. Goiri, I., Katsak, W., Le, K., Nguyen, T.D., Bianchini,
R.: Designing and managing data centers powered by re-
newable energy. IEEE Micro 34(3), 8–16 (2014)

22. Gunaratne, C., Christensen, K., Nordman, B., Suen, S.:
Reducing the energy consumption of ethernet with adap-

tive link rate (ALR). IEEE Transactions on Computers
57(4), 448–461 (2008)

23. Gupta, M., Singh, S.: Greening of the internet. In: ACM
Conf. on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM
’03, pp. 19–26. ACM, New York, USA (2003)

24. He, K., Khalid, J., Gember-Jacobson, A., Das, S.,
Prakash, C., Akella, A., Li, L.E., Thottan, M.: Measur-
ing control plane latency in sdn-enabled switches. In:
ACM SIGCOMM Symposium on Software Defined Net-
working Research, SOSR ’15, pp. 25:1–25:6. ACM, New
York, USA (2015)

25. Jeanvoine, E., Sarzyniec, L., Nussbaum, L.: Kadeploy3:
Efficient and Scalable Operating System Provisioning.
USENIX ;login: 38(1), 38–44 (2013)

26. Kilper, D.: Energy challenges in access and aggregation
networks. Symposium on Communication Networks
Beyond the Capacity Crunch (2015). URL https:

//royalsociety.org/events/2015/05/communication-

networks/

27. Kim, J., Cha, B., Kim, J., Kim, N.L., Noh, G., Jang,
Y., An, H.G., Park, H., Hong, J., Jang, D., Ko, T., Song,
W.C., Min, S., Lee, J., Kim, B., Cho, I., Kim, H.S., Kang,
S.M.: Proceedings of the asia-pacific advanced network.
OF@TEIN: An OpenFlow-enabled SDN Testbed over In-
ternational SmartX Rack Sites 36, 17–22 (2013)

28. Kurek, T., Niemiec, M., Lason, A.: Taking back control
of privacy: a novel framework for preserving cloud-based
firewall policy confidentiality. International Journal of
Information Security pp. 1–16 (2015)

29. Melazzi, N., Detti, A., Mazza, G., Morabito, G., Salsano,
S., Veltri, L.: An openflow-based testbed for information
centric networking. In: Future Network Mobile Summit
(FutureNetw 2012), pp. 1–9 (2012)

30. Miyazaki, T., Popescuy, I., Chino, M., Wang, X.,
Ashizawa, K., Okamotoz, S., Veeraraghavan, M., Ya-
manaka, N.: High speed 100GE adaptive link rate switch-
ing for energy consumption reduction. In: Int. Conf. on
Optical Network Design and Modeling (ONDM 2015),
pp. 227–232 (2015)

31. Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S.,
Wetherall, D.: Reducing network energy consumption via
sleeping and rate-adaptation. In: 5th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI’08, pp. 323–336. USENIX Association, Berkeley,
USA (2008)

32. Ooteghem, J.V., Taylor, S., Grace, P., Lobillo, F.,
Smirnov, M., Demeester, P.: Sustaining a federation of
future internet experimental facilities. Tech. Rep. 101436,
Int. Telecommunications Society (ITS) (2014)

33. Peterson, L., Muir, S., Roscoe, T., Klingaman, A.: Plan-
etLab architecture: An overview. Tech. Rep. PDN-06-
031, PlanetLab Consortium, Princeton, USA (2006)

34. Pfaff, B., Pettit, J., Koponen, T., Jackson, E.J., Zhou, A.,
Rajahalme, J., Gross, J., Wang, A., Stringer, J., Shelar,
P., Amidon, K., Casado, M.: The design and implemen-
tation of open vSwitch. In: 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
2015) (2015)

35. Rossigneux, F., Gelas, J.P., Lefevre, L., de Assuncao,
M.D.: A generic and extensible framework for monitoring
energy consumption of OpenStack clouds. In: Sustain-
Com 2014, pp. 696–702 (2014)

36. Ryu project team: RYU SDN Framework - English Edi-
tion. Ryu SDN Framework Community (2014)

http://www.ietf.org/rfc/rfc3272.txt
http://www.ietf.org/rfc/rfc3272.txt
https://royalsociety.org/events/2015/05/communication-networks/
https://royalsociety.org/events/2015/05/communication-networks/
https://royalsociety.org/events/2015/05/communication-networks/

Designing and Building SDN Testbeds for Energy-Aware Traffic Engineering Services 15

37. Sallent, S., Abelém, A., Machado, I., Bergesio, L., Fdida,
S., Rezende, J., Azodolmolky, S., Salvador, M., Ciuffo, L.,
Tassiulas, L.: FIBRE project: Brazil and Europe unite
forces and testbeds for the internet of the future. In:
T. Korakis, M. Zink, M. Ott (eds.) Testbeds and Research
Infrastructure, Development of Networks and Communi-
ties, LNICST, vol. 44, pp. 372–372. Springer Berlin Hei-
delberg (2012)

38. Sarolahti, P., Kuznetsov, A.: Congestion control in
linux tcp. In: USENIX Annual Technical Conference,
FREENIX Track, pp. 49–62 (2002)

39. Szymanski, A., Lason, A., Rzasa, J., Jajszczyk, A.: Per-
formance evaluation of the grade-of-service-based routing
strategies for optical networks. In: IEEE International
Conference on Communications (ICC 2008), pp. 5252–
5257. IEEE (2008)

40. Thanh, N.H., Nam, P.N., Truong, T.H., Hung, N.T.,
Doanh, L.K., Pries, R.: Enabling experiments for energy-

efficient data center networks on OpenFlow-based plat-
form. In: Fourth International Conference on Communi-
cations and Electronics (ICCE 2012), pp. 239–244 (2012)

41. Vasić, N., Kostić, D.: Energy-aware traffic engineering.
In: 1st Int. Conf. on Energy-Efficient Computing and
Networking, e-Energy ’10, pp. 169–178. ACM, New York,
USA (2010)

42. Vu, T.H., Nam, P.N., Thanh, T., Hung, L.T., Van, L.A.,
Linh, N.D., Thien, T.D., Thanh, N.H.: Power aware
OpenFlow switch extension for energy saving in data cen-
ters. In: International Conference on Advanced Technolo-
gies for Communications (ATC 2012), pp. 309–313 (2012)

43. Zhang, M., Yi, C., Liu, B., Zhang, B.: GreenTE: Power-
aware traffic engineering. In: 18th IEEE Int. Conf. on
Network Protocols (ICNP 2010), pp. 21–30 (2010)

	Introduction
	Energy-Aware Traffic Engineering and SDNs
	Proof-of-Concept Platforms
	Green Traffic Engineering Use Cases
	Related Work
	Conclusions

