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Abstract

Under several emerging application scenarios, such as in smart cities, operational monitoring of large infrastructure,
wearable assistance, and Internet of Things, continuous data streams must be processed under very short delays.
Several solutions, including multiple software engines, have been developed for processing unbounded data streams
in a scalable and efficient manner. More recently, architecture has been proposed to use edge computing for data
stream processing. This paper surveys state of the art on stream processing engines and mechanisms for exploiting
resource elasticity features of cloud computing in stream processing. Resource elasticity allows for an application or
service to scale out/in according to fluctuating demands. Although such features have been extensively investigated
for enterprise applications, stream processing poses challenges on achieving elastic systems that can make efficient
resource management decisions based on current load. Elasticity becomes even more challenging in highly distributed
environments comprising edge and cloud computing resources. This work examines some of these challenges and
discusses solutions proposed in the literature to address them.
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1. Introduction streams to detect patterns, identify failures [6], and gain
insights.

Several stream processing frameworks and tools have
been proposed for carrying out analytical tasks in a
scalable and efficient manner. Many tools employ a
dataflow approach where incoming data results in data
streams that are redirected through a directed graph
of operators placed on distributed hosts that execute
algebra-like operations or user-defined functions. Some
frameworks, on the other hand, discretise incoming
data streams by temporarily storing arriving data during
small time windows and then performing micro-batch
processing whereby triggering distributed computations
on the previously stored data. The second approach
aims at improving the scalability and fault-tolerance of
distributed stream processing tools by handling strag-
gler tasks and faults more efficiently.

Also to improve scalability, many stream processing
frameworks have been deployed on clouds [7], aiming
to benefit from characteristics such as resource elastic-
ity. Elasticity, when properly exploited, refers to the
ability of a cloud to allow a service to allocate additional
*Corresponding author: assuncao@acm.org resources or release idle capacity on demand to match

The increasing availability of sensors, mobile phones,
and other devices has led to an explosion in the volume,
variety and velocity of data generated and that requires
analysis of some type. As society becomes more inter-
connected, organisations are producing vast amounts of
data as result of instrumented business processes, mon-
itoring of user activity [1, 2], wearable assistance [3],
website tracking, sensors, finance, accounting, large-
scale scientific experiments, among other reasons. This
data deluge is often termed as big data due to the chal-
lenges it poses to existing infrastructure regarding, for
instance, data transfer, storage, and processing [4].

A large part of this big data is most valuable when
it is analysed quickly, as it is generated. Under sev-
eral emerging application scenarios, such as in smart
cities, operational monitoring of large infrastructure,
and Internet of Things (IoT) [5], continuous data
streams must be processed under very short delays. In
several domains, there is a need for processing data
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the application workload. Although efforts have been
made towards making stream-processing more elastic,
many issues remain unaddressed. There are challenges
regarding the placement of stream processing tasks on
available resources, identification of bottlenecks, and
application adaptation. These challenges are exacer-
bated when services are part of a larger infrastructure
that comprises multiple execution models (e.g. lambda
architecture, workflows or resource-management bind-
ings for high-level programming abstractions [8, 9]) or
hybrid environments comprising both cloud and edge
computing resources [10, 11].

More recently, software frameworks [12, 13] and ar-
chitectures have been proposed for carrying out data
stream processing using constrained resources located
at the edge of the Internet. This scenario introduces
additional challenges regarding application scheduling,
resource elasticity, and programming models. This arti-
cle surveys stream-processing solutions and approaches
for deploying data stream processing on cloud comput-
ing and edge environments. By so doing, it makes the
following contributions:

o It reviews multiple generations of data stream pro-
cessing frameworks, describing their architectural
and execution models.

o It analyses and classifies existing work on exploit-
ing elasticity to adapt resource allocation to match
the demands of stream processing services. Previ-
ous work has surveyed stream processing solutions
without a focus on how resource elasticity is ad-
dressed [14]. The present work provides a more in-
depth analysis of existing solutions and discusses
how they attempt to achieve resource elasticity.

e [t discusses ongoing efforts on resource elasticity
for data stream processing and their deployment on
edge computing environments, and outlines future
directions on the topic.

The rest of this paper is organised as follows. Section
2 provides background information on big-data ecosys-
tems and architecture for online data processing. Sec-
tion 3 describes existing engines and other software so-
lutions for data stream processing whereas Section 4
discusses managed cloud solutions for stream process-
ing. In Section 5 we elaborate on how existing work
tries to tackle aspects of resource elasticity for data
stream processing. Section 6 discusses solutions that
aim to leverage multiple types of infrastructure (e.g.
cloud and edge computing) to improve the performance
of stream processing applications. Section 7 presents

future directions on the topic and finally, Section 8§ con-
cludes the paper.

2. Background and Architecture

This section describes background on stream-
processing systems for big-data. It first discusses how
layered real-time architecture is often organised and
then presents a historical summary of how such systems
have evolved over time.

2.1. Online Data Processing Architecture

Architecture for online' data analysis is generally
multi-tiered systems that comprise many loosely cou-
pled components [15, 16, 17]. While the reasons for
structuring architecture in this way may vary, the main
goals include improving maintainability, scalability, and
availability. Figure 1 provides an overview of com-
ponents often found in a stream-processing architec-
ture. Although an actual system might not have all these
components, the goal here is to describe how a stream
processing architecture may look like and position the
stream processing solutions discussed later.

The Data Sources (Figure 1) that require timely pro-
cessing and analysis include Web analytics, infrastruc-
ture operational monitoring, online advertising, social
media, and IoT. Most Data Collection is performed by
tools that run close to where the data and that commu-
nicate the data via TCP/IP connections, UDP, or long-
range communication [18]. Solutions such as JavaScript
Object Notation (JSON) are used as a data-interchange
format. For more structured data, wire protocols such
as Apache Thrift [19] and Protocol Buffers [20], can be
employed. Other messaging protocols have been pro-
posed for IoT, some of which are based on HTTP [5].
Most data collection activities are executed at the edges
of a network, and some level of data aggregation is often
performed via, for instance Message Queue Telemetry
Transport (MQTT), before data is passed through to be
processed and analysed.

An online data-processing architecture can comprise
multiple tiers of collection and processing, with the con-
nection between these tiers made on an ad-hoc basis.
To allow for more modular systems, and to enable each
tier to grow at different paces and hence accommo-
date changes, the connection is at times made by mes-
sage brokers and queuing systems such as Apache Ac-
tiveMQ [21], RabbitMQ [22] and Kestrel [23], publish-
subscribe based solutions including Apache Kafka [24]

ISimilar to Boykin et al., hereafter use the term online to mean
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that “data are processed as they are being generated”.



Data Sources

1

1

1

1

i

E Web Analytics

! Mobile Data and loT
| Operational Monitoring
| Online Advertising

! Social Media

! Sensor Networks

[}
1
1
1
1
1
1

Often deployed close to
where data is produced.
Data is pushed to a
cluster/cloud by client
applications

Data Collection

Often deployed on a cluster of physical/virtual

machines or on the cloud

Network Clients
JSON,
Protocol Buffers,
Apache Thrift,
Apache Avro, etc

Data Aggregation

i

Messaging Systems i | Stream Processing i E Delivery i
! [ |

[ [}
Queueing b Data Stream ! 1| Web Interfaces i
Systems ] I Processing | Dashboards, :
B Engines B RESTful AP'Is, :
B B Web-rendering, ]
Publish-Subscribe | | | Complex B Tools :
Messaging 1 i Event-Processing 1 i 1
i ! Frameworks i I | Analytics Tools i

1 1
IoT Hubs o | ]
1! ! |
. S !

Storage for long-term batch analysis,
cross-analysis of streaming/data at rest,
and visualisation

Data Storage

Relational
Databases

NoSQL
Databases

In-Memory
Storage

Figure 1: Overview of an online data-processing architecture.

and DistributedLog [25], or managed services such
as Amazon Kinesis Firehose [26] and Azure IoT
Hubs [27]. These systems are termed here as “Messag-
ing Systems” and they enable, for instance, the process-
ing tier to expand to multiple data centres and collection
to be changed without impacting processing.

Over the years several models and frameworks have
been created for processing large volumes of data,
among which MapReduce is one of the most popular
[28]. Although most frameworks process data in a batch
manner, numerous attempts have been made to adapt
them to handle more interactive and dynamic workloads
[29, 30]. Such solutions handle many of today’s use
cases, but there is an increasing need for processing
collected data always at higher rates and providing ser-
vices with short response time. Data Stream Process-
ing systems are commonly designed to handle and per-
form one-pass processing of unbounded streams of data.
This tier, the main focus of this paper, includes solutions
that are commonly referred to as stream management
systems and complex-event processing systems. The
next sections review data streams and provide a historic
overview of how this core component of the data pro-
cessing pipeline has evolved over time.

Moreover, a data processing architecture often stores
data for further processing, or as support to presente

results to analysts or deliver them to other analytics
tools. The range of Data Storage solutions used to sup-
port areal-time architecture are numerous, ranging from
relational databases, to key-value stores, in-memory
databases, and NoSQL databases [31]. The results of
data processing are delivered (i.e. Delivery tier) to be
used by analysts or machine learning and data mining
tools. Means to interface with such tools or to present
results to be visualised by analysts include RESTful or
other Web-based APIs, Web interfaces and other ren-
dering solutions. There are also many data storage so-
Iutions provided by cloud providers such as Amazon,
Azure, Google, and others.

2.2. Data Streams and Models

The definition of a data stream can vary across do-
mains, but in general, it is commonly regarded as input
data that arrives at a high rate, often being considered as
big data, hence stressing communication and computing
infrastructure. The type of data in a stream may vary
according to the application scenario, including discrete
signals, event logs, monitoring information, time series
data, video, among others. Moreover, it is also impor-
tant to distinguish between streaming data when it ar-
rives at the processing system via, for instance, a log or
queueing system, and intermediate streams of fuples re-
sulting from the processing by system elements. When



discussing solutions, this work focuses on the resource
management and elasticity aspects concerning the inter-
mediate streams of tuples created or/and processed by
elements of a stream processing system.

Multiple attempts have been made towards classify-
ing stream types. Muthukrishnan [32] classifies data
streams under several models based on how their in-
put data describes the underlying signal they represent.
The identified models include time series, cash register,
and rurnstile. Many of the application domains envi-
sioned when these models were identified concern op-
erational monitoring and financial markets. More re-
cent streams of data generated by applications such as
social networks can be semi-structured or unstructured,
thus carrying information about multiple signals. In this
work, an input data stream is an online and unbounded
sequence of data elements [33, 34]. The elements can
be homogeneous, hence structured, or heterogeneous,
thus semi-structured or unstructured. More formally, an
input stream is a sequence of data elements ey, e, ...
that arrive one at a time, where each element ¢; can be
viewed as e; = (¢;, D;) where ; is the time stamp associ-
ated with the element, and D; = (d;,d>,...) is the ele-
ment payload, here represented as a tuple of data items.

As mentioned earlier, many stream processing frame-
works use a data flow abstraction by structuring an ap-
plication as a graph, generally a Directed Acyclic Graph
(DAG), of operators. These operators perform func-
tions such as counting, filtering, projection, and aggre-
gation, where the processing of an input data stream
by an element can result in the creation of subsequent
streams that may differ from the original stream in terms
of data structure and rate.

Frameworks that structure data stream processing ap-
plications as data flow graph generally employ a logical
abstraction for specifying operators and how data flows
between them; this abstraction is termed here as logical
plan [35] (see Figure 2). As explained in detail later,
a developer can provide parallelisation hints or specify
how many instances of each operator should be created
when building the physical plan that is used by a sched-
uler or another component responsible for placing the
operator instances on available cluster resources. As de-
picted in the figure, physical instances of a same logical
operator may be placed onto different physical or virtual
resources.

With respect to the selectivity of an operator (i.e. the
number of items it produces per number of items con-
sumed) it is generally classified [36] (Figure 3) as selec-
tive, where it produces less than one; one-to-one, where
the number of items is equal to one; or prolific, in which
it produces more than one. Regarding state, an opera-
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Figure 2: Logical and physical operator plans.

tor can be stateless, in which case it does not maintain
any state between executions; partitioned stateful where
a given data structure maintains state for each down-
stream based on a partitioning key, and stateful where
no particular structure is required.
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Figure 3: Types of operator selectivity and state.

Organising a data stream processing application as a
graph of operators allows for exploring certain levels
of parallelism (Figure 4) [37]. For example, pipeline
parallelism enables an operator to process a tuple while
an upstream operator can handle the next tuple concur-
rently. Graphs can contain segments that execute the
same set of tuples in parallel, hence exploiting task par-
allelism. Several techniques also aim to use data par-
allelism, which often requires changes in the graph to
replicate operators and adjust the data streams between
them. For example, parallelising regions of a chain
graph [36] may consist of creating multiple pipelines
preceded by an operator that partitions the incoming
tuples across the downstream pipelines — often called
a splitter — and followed by an operator that merges
the tuples processed along the pipelines — termed as an
mergers. Although parallelising regions can increase
throughput, they may require mechanisms to guarantee
time semantics, which can make splitters and mergers



block for some time to guarantee, for instance, time or-
der of events.

Types of parallelism Pipeline parallelism
‘ETask parallelism
Data parallelism

Figure 4: Some types of parallelism enabled by data-flow based
stream processing.

2.3. Distributed Data Stream Processing

Several systems have been developed to process dy-
namic or streaming data [38, 17], hereafter termed as
Stream Processing Engines (SPEs). One of the cat-
egories under which such systems fall is often called
Data Stream Management System (DSMS), analogous
to DataBase Management Systems (DBMSs) which are
responsible for managing disk-resident data usually pro-
viding users with means to perform relational opera-
tions among table elements. DSMSs include opera-
tors that perform standard functions, joins, aggrega-
tions, filtering, and advanced analyses. Early DSMSs
provided SQL-like declarative languages for specifying
long-running queries over unbounded streams of data.
Complex Event Processing (CEP) systems [39], a sec-
ond category, supports the detection of relationships
among events, for example, temporal relations that can
be specified by correlation rules, such a sequence of spe-
cific events over a given time interval. CEP systems also
provide declarative interfaces using event languages like
SASE [40] or following data-flow specifications.

The first generation of SPEs provided extensions to
the traditional DBMS model by enabling long-running
queries over dynamic data, and by offering declarative
interfaces and SQL-like languages that allowed a user
to specify algebra-like operations. Most engines were
restricted to a single machine and were not executed
in a distributed fashion. The second generation of en-
gines enabled distributed processing by decoupling pro-
cessing entities that communicate with one another us-
ing message-passing processes. This enhanced model
could take advantage of distributed hosts, but introduced
challenges about load balancing and resource manage-
ment. Despite the improvements in distributed execu-
tion, most engines of these two generations fall into the
category of DSMSs, where queries are organised as op-
erator graphs. IBM proposed System S, an engine based
on data-flow graphs where users could develop opera-
tors of their own. The goal was to improve scalability
and efficiency in stream processing, a problem inher-
ent to most DSMSs. Achieving horizontal scalability

while providing declarative interfaces still remained a
challenge not addressed by most engines.

More recently, several SPEs were developed to per-
form distributed stream processing while aiming to
achieve scalable and fault-tolerant execution on clus-
ter environments. Many of these engines do not pro-
vide declarative interfaces, requiring a developer to pro-
gram applications rather than write queries. Most en-
gines follow a one-pass processing model where the ap-
plication is designed as a data-flow graph. Data items
of an input stream, when received, are forwarded throw
a graph of processing elements, which can, in turn, cre-
ate new streams that are redirected to other elements.
These engines allow for the specification of User De-
fined Functions (UDFs) to be performed by the process-
ing elements when an application is deployed. Another
model that has gained popularity consists in discretising
incoming data streams and launching periodical micro-
batch executions. Under this model, data received from
an input stream is stored during a time window, and to-
wards the end of the window, the engine triggers dis-
tributed batch processing. Some systems trigger recur-
ring queries upon bulk appends to data streams [41].
This model aims to improve scalability and throughput
for applications that do not have stringent requirements
regarding processing delays.

Generations of
Stream Processing
Engines

First: extensions to traditional DBMS
Second: distributed execution
Third: user-defined functions

Fourth: highly distributed,
edge computing+cloud

Figure 5: Generations of Stream Processing Engines.

We are currently witnessing the emergence of a
fourth generation of data stream processing frame-
works, where certain processing elements are placed on
the edges of the network. Architectural models [42],
SPEs [43, 13], and engines for certain application sce-
narios such as IoT are emerging. Architecture that
mixes elements deployed on edge computing resources
and the cloud is provided in the literature [43, 44, 42].

The generations of SPEs are summarised in Figure 5.
Although we discuss previous generations of DSMS and
CEP solutions, this work focuses on state of the art
frameworks and technology for stream processing and
solutions for exploiting resource elasticity for stream
processing engines that accept UDFs. We focus on the
third generation of stream processing frameworks while
discussing some of the challenges inherent to the fourth.



2.4. Resource Elasticity

Cloud computing is a model under which organisa-
tions of all sizes can lease IT resources and services
on-demand and pay as they go [7]. Resources allo-
cated to customers are often Virtual Machines (VMs)
or containers that share the underlying physical infras-
tructure, which allows for workload consolidation that
can hence lead to better system utilisation and energy
efficiency. Another important feature of clouds is re-
source elasticity, which enables organisations to change
infrastructure capacity dynamically with the support of
auto-scaling operations. This capability is essential in
several settings as it helps service providers: to min-
imise the number of allocated resources and to deliver
adequate Quality of Service (QoS) levels, usually syn-
onymous with low response times.

In addition to deciding when to modify the system ca-
pacity, auto-scaling algorithms must identify adequate
step-sizes (i.e. the number of resources by which the
cloud should shrink and expand) during scale out/in op-
erations in order to prevent resource wastage and unac-
ceptable QoS [45]. An elastic system requires not only
mechanisms that adjust service execution to current re-
source capacity — e.g. present horizontal scalability —
but also an auto-scaling policy that defines when and by
how much resource capacity is added or removed.

Auto-scaling policies were proposed for several types
of enterprise applications and certain big-data work-
loads, mostly those that process data in batches. Al-
though resource elasticity for stream processing appli-
cations has been investigated in previous work, several
challenges are not yet fully addressed [38]. As high-
lighted by Tolosana-Calasanz et al. [46], mechanisms
for scaling resources in cloud infrastructure can still in-
cur severe delays. For stream processing engines that
organise applications as operator graphs, an elastic op-
eration that adds more nodes at runtime may require re-
routing the data and migrating stream processing oper-
ators. Moreover, as stream processing applications run
for long periods of time and cannot be restarted with-
out losing data, resource allocation must be performed
much more carefully.

When considering solutions for managing elasticity
of data streaming, this work discusses the techniques
and metrics employed for monitoring the performance
of data stream processing systems and the actions car-
ried out during auto-scaling operations. The actions
performed during auto-scaling operations include, for
instance adding/removing computing resources and ad-
justing the stream processing application by changing
the level of parallelism of certain processing operators,

adjusting the processing graph, merging or splitting op-
erators, among other things.

3. Stream Processing Engines and Tools

While the first generation of SPEs were analogous
to DBMSs, developed to perform long running queries
over dynamic data and consisted essentially of cen-
tralised solutions, the second generation introduced dis-
tributed processing and revealed challenges on load bal-
ancing and resource management. The third genera-
tion of solutions resulted in more general application
frameworks that enable the specification and execution
of UDFs. This section presents a historical overview
of data stream processing solutions and then discusses
third-generation solutions.

3.1. Early Stream Processing Solutions

The first-generation of stream processing systems
dates back to 2000s and were essentially extensions
of DBMSs for performing continuous queries that,
compared to today’s scenarios, did not process large
amounts of data. In most systems, an application or
query is a DAG whose vertices are operators that ex-
ecute functions that transform one or multiple data
streams and edges that define how data elements flow
from one operator to another. The execution of a func-
tion by an operator over an incoming data stream can
result in one or multiple output streams. This section
provides a select list of these systems and describes their
properties.

NiagaraCQ [47] was conceived to perform two cat-
egories of queries over XML datasets, namely queries
that are executed as new data becomes available
and continuous queries that are triggered periodically.
STREAM [48] provides a Continuous Query Language
(CQL) for specifying queries executed over incoming
streams of structured data records. STREAM compiles
CQLs queries into query plans, which comprise opera-
tors that process tuples, queues that buffer tuples, and
synopses that store operator state. A query plan is an
operator tree or a DAG, where vertices are operators,
and edges represent their composition and define how
the data flows between operators. When executing a
query plan, the scheduler selects plan operators and as-
signs them to available resources. Operator scheduling
presents several challenges as it needs to respect con-
straints concerning query response time and memory
utilisation. STREAM uses a chain scheduling technique
that aims to minimise memory usage and adapt its exe-
cution to variations in data arrival rate [49].



Aurora [50] was designed for managing data streams
generated by monitoring applications.  Similar to
STREAM, it enables continuous queries that are viewed
as DAGs whose vertices are operators, and edges that
define the tuple flow between operators. Aurora sched-
ules operators using a technique termed as train schedul-
ing that explores non-linearities when processing tuples
by essentially storing tuples at the input of so-called
boxes, thus forming a train, and processing them in
batches. It pushes tuple trains through multiple boxes
hence reducing I/O operations.

As a second-generation of stream processing sys-
tems, Medusa [51] uses Aurora as its query processing
engine and arranges its queries to be distributed across
nodes, routeing tuples and results as needed. By en-
abling distributed processing and task migration across
participating nodes, Medusa introduced several chal-
lenges in load balancing, distribute load shedding [52],
and resource management. For instance, the algorithm
for selecting tasks to offload must consider the data flow
among operators. Medusa offers techniques for balanc-
ing the load among nodes, including a contract-based
scheme that provides an economy-inspired mechanism
for overloaded nodes to shed tasks to other nodes. Bo-
realis [53] further extends the query functionalities of
Aurora and the processing capabilities of Medusa [51]
by dynamically revising query results, enabling query
modification, and distributing the processing of opera-
tors across multiple sites. Medusa and Borealis have
been key to distributed stream processing, even though
their operators did not allow for the execution of user-
defined functions, a key feature of current stream pro-
cessing solutions.

3.2. Current Stream Processing Solutions

Current systems enable the processing of unbounded
data streams across multiple hosts and the execution of
UDFs. Numerous frameworks have been proposed for
distributed processing following essentially two models
(Figure 6):

e the operator-graph model described earlier, where
a processing system is continuously ingesting data
that is processed at a by-tuple level by a DAG of
operators; and

e a micro-batch in which incoming data is grouped
during short intervals, thus triggering a batch pro-
cessing towards the end of a time window. The rest
of this section provides a description of select sys-
tems that fall into these two categories.

. By-tuple processing,
Processing model —|: dataflow model

Micro-batch execution

Figure 6: Streaming processing approaches.

3.2.1. Apache Storm

An application in Storm, also called a Topology, is a
computation graph that defines the processing elements
(i.e. Spouts and Bolts) and how the data (i.e. tuples)
flows between them. A topology runs indefinitely, or
until a user stops it. Similarly to other application mod-
els, a topology receives an influx of data and divides it
into chunks that are processed by tasks assigned to clus-
ter nodes. The data that nodes send to one another is in
the form of sequences of Tuples, which are ordered lists
of values.

Storm cluster Worker node Worker node

Worker Worker Worker Worker
process || process process || process
\ Worker node Worker node

Worker Worker Worker Worker
process || process process || process

Master node

Nimbus

JVM
Executor Executor
Spout Spout || Spout
or or or
Bolt Bolt Bolt

Figure 7: Main components of a Storm cluster [16].

Figure 7 depicts the main components of a Storm
cluster [16]. Storm uses a master-slave execution ar-
chitecture where a Master Node, which runs a dae-
mon called Nimbus, is responsible for scheduling tasks
among Worker Nodes and for maintaining a member-
ship list to ensure reliable data processing. Nimbus in-
teracts with Zookeeper [54] to detect node failure and
reassign tasks accordingly if needed. A Storm cluster
comprises multiple worker nodes, each worker repre-
senting a virtual or physical machine. A worker node
runs a Supervisor daemon, and one or multiple Worker
Processes, which are processes (i.e. a JVM) spawned
by Storm and able to run one or more Executors. An
executor thread executes one or more tasks. A Task is
both a realisation of a topology node and an abstraction
of a Spout or Bolt. A Spout is a data stream source; it is



the component responsible for reading the data from an
external source and generating the data influx processed
by the topology nodes. A Bolt listens to data, accepts a
tuple, performs a computation or transformation — e.g.
filtering, aggregation, joins, query databases, and other
UDFs — and optionally emits a new tuple.

Storm has many configuration options to define how
topologies make use of host resources. An administra-
tor can specify the number of worker processes that a
node can create, also termed slots, as well as the amount
of memory that slots can use. To parallelise nodes of
a Storm topology a user needs to provide hints on how
many concurrent tasks each topology component should
run or how many executors to use; the latter influences
how many threads will execute spouts and bolts. Tasks
resulting from parallel Bolts perform the same function
over different sets of data but may execute in differ-
ent machines and receive data from different sources.
Storm’s scheduler, which is run by the Master, assigns
tasks to workers in a round-robin fashion.

Storm allows for new worker nodes to be added to an
existing cluster on which new topologies and tasks can
be launched. It is also possible to modify the number of
worker processes and executors spawned by each pro-
cess. Modifying the level of parallelism by increasing
or reducing the number of tasks that a running topol-
ogy can create or the number of executors that it can
use is more complex and, by default, requires the topol-
ogy to be stopped and rebalanced. Such operation is ex-
pensive and can incur a considerable downtime. More-
over, some tasks may maintain state, perform grouping
or hashing of tuple values that are henceforth assigned
to specific downstream tasks. Stateful tasks complicate
the dynamic adjustment of a running topology even fur-
ther. As described in Section 5, existing work has at-
tempted to circumvent some of these limitations to en-
able resource elasticity.

Further performance tuning is possible by adjusting
the length of executors’ input and output queues, and
worker processes’ queues; factors that can impact the
behaviour of the framework and its performance. Ex-
isting work has proposed changes to Storm to provide
more predictable performance and hence meet some of
the requirements of real time applications [55]. By us-
ing Trident, Storm can also perform micro-batch pro-
cessing. Trident topologies can be designed to act on
batches of tuples that are grouped during short intervals
and then processed by a task topology. Storm is also
used by frameworks that provide high-level program-
ming abstractions such as Summingbird [8] that mix
multiple execution models.

3.2.2. Twitter Heron

While maintaining API compatibility with Apache
Storm, Twitter’s Heron [35] was built with a range of
architectural improvements and mechanisms to achieve
better efficiency and to address several of Storm issues
highlighted in previous work [56]. Heron topologies are
process-based with each process running in isolation,
which eases debugging, profiling, and troubleshooting.
By using its built-in back pressure mechanisms, topolo-
gies can self-adjust when certain components lag.

Similarly to Storm, Heron topologies are directed
graphs whose vertices are either Spouts or Bolts and
edges represent streams of fuples. The data model con-
sists of a logical plan, which is the description of the
topology itself and is analogous to a database query; and
the physical plan that maps the actual execution logic
of a topology to the physical infrastructure, including
the machines that run each spout or bolt. When consid-
ering the execution model, Heron topologies comprise
the following main components: Topology Master, Con-
tainer, Stream Manager, Heron Instance, Metrics Man-
ager, and Heron Tracker.
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Figure 8: Main architecture components of a Heron topology [35].

Heron provides a command-line tool for submitting
topologies to the Aurora Scheduler, a scheduler built to
run atop Mesos [57]. Heron can also work with other
schedulers including YARN, and Amazon EC2 Con-
tainer Service (ECS) [58]. Support to other schedulers
is enabled by an abstraction designed to avoid the com-
plexity of Storm Nimbus, often highlighted as an archi-
tecture issue in Storm. A topology in Heron runs as an
Aurora job that comprises multiple Containers.

When a topology is deployed, Heron starts a single
Topology Master (TM) and multiple containers (Fig-



ure 8). The TM manages the topology throughout its
entire life cycle until a user deactivates it. Zookeeper
[54] is used to guarantee that there is a single TM for
the topology and that it is discoverable by other pro-
cesses. The TM also builds the physical plan and serves
as a gateway for topology metrics. Heron allows for
creating a StandBy TM in case the main TM fails. Con-
tainers communicate with the TM hence forming a fully
connected graph. Each container hosts multiple Heron
Instances (HlIs), a Stream Manager (SM), and a Metrics
Manager (MM). An SM manages the routing of tuples,
whereas SMs in a topology form a fully connected net-
work. Each HI communicates with its local SM when
sending and receiving tuples. The work for a spout and
a bolt is carried out by HIs, which unlike Storm work-
ers, are JVM processes. An MM gathers performance
metrics from components in a container, which are in
turn routed both to the TM and external collectors. An
Heron Tracker (HT) is a gateway for cluster-wide infor-
mation about topologies.

An HI follows a two-threaded design with one thread
responsible for executing the logic programmed as a
spout or bolt (i.e. Execution), and another thread for
communicating with other components and carrying out
data movement in and out of the HI (i.e. Gateway). The
two threads communicate with one another via three
unidirectional queues, of which two are used by the
Gateway to send/receive tuples to/from the Execution
thread, and another is employed by the Execution thread
to export collected performance metrics.

3.2.3. Apache §4

The Simple Scalable Streaming System (S4) [59] is
a distributed stream processing engine that uses the ac-
tor model for managing concurrency. Processing Ele-
ments (PEs) perform computation and exchange events,
where each PE can handle data events and either emit
new events or publish results.

S4 can use commodity cluster hardware and em-
ploys a decentralised and symmetric runtime architec-
ture comprising Processing Nodes (PNs) that are homo-
geneous concerning functionality. As depicted in Figure
9, a PN is a machine that hosts a container of PEs that
receive events, execute user-specified functions over the
data, and use the communication layer to dispatch and
emit new events. ZooKeeper [54] provides features used
for coordination between PNs.

When developing a PE, a developer must specify its
functionality and the type of events it can consume.
While most PEs can only handle events with given
keyed attribute values, S4 provides a keyless PE used
by its input layer to handle all events that it receives.
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Figure 9: A processing node in S4 [59].

PNs route events using a hash function of their keyed
attribute values. Following receipt of an event, a lis-
tener passes it to the processing element container that
in turn delivers it to the appropriate PEs.

3.2.4. Apache Samza

Apache Samza [60] is a stream processing frame-
work that uses Apache Kafka for messaging and Apache
YARN [61] for deployment, resource management, and
security. A Samza application is a data flow that consists
of consumers that fetch data events that processed by a
graph of jobs, each job containing one or multiple tasks.
Unlike Storm, however, where topologies need to be de-
ployed as a whole, Samza does not natively support the
DAG topologies. In Samza, each job is an entity that
can be deployed, started or stopped independently.

Like Heron, Samza uses single-threaded processes
(containers), mapped to one CPU core. Each Samza
task contains an embedded key-value store used to
record state. Changes to this key-value store are repli-
cated to other machines in the cluster allowing for tasks
to be restored quickly in case of failure.

3.2.5. Apache Flink

Flink offers a common runtime for data streaming
and batch processing applications [62]. Applications
are structured as arbitrary DAGs, where special cycles
are enabled via iteration constructs. Flink works with
the notion of streams onto which transformations are
performed. A stream is an intermediate result, whereas
a transformation is an operation that takes one or more
streams as input, and computes one or multiple streams.
During execution, a Flink application is mapped to a
streaming workflow that starts with one or more sources,
comprises transformation operators, and ends with one
or multiple sinks. Although there is often a mapping of
one transformation to one dataflow operator, under cer-
tain cases, a transformation can result in multiple oper-



ators. Flink also provides APIs for iterative graph pro-
cessing, such as Gelly [63].

The parallelism of Flink applications is determined
by the degree of parallelism of streams and individual
operators. Streams can be divided into stream partitions
whereas operators are split into subtasks. Operator sub-
tasks are executed independently from one another in
different threads that may be allocated to different con-

tainers or machines.
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Figure 10: Apache Flink’s execution model [62].
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Flink’s execution model (Figure 10) comprises two
types of processes, namely a master also called the Job-
Manager and workers termed as TaskManagers. The
JobManager is responsible for coordinating the schedul-
ing tasks, checkpoints, failure recovery, among other
functions. TaskManagers execute subtasks of a Flink
dataflow. They also buffer and exchange data streams.
A user can submit an application using the Flink client,
which prepares and sends the dataflow to a JobManager.

Similar to Storm, a Flink worker is a JVM pro-
cess that can execute one or more subtasks in separate
threads. The worker also uses the concept of slots to
configure how many execution threads can be created.
Unlike Storm, Flink implements its memory manage-
ment mechanism that enables a fair share of memory
that is dedicated to each slot.

3.2.6. Spark Streaming

Apache Spark is a cluster computing solution that
extends the MapReduce model to support other types
of computations such as interactive queries and stream
processing [64]. Designed to cover a variety of work-
loads, Spark introduces an abstraction called Resilient

10

Distributed Datasets (RDDs) that enables running com-
putations in memory in a fault-tolerant manner. RDDs,
which are immutable and partitioned collections of
records, provide a programming interface for perform-
ing operations, such as map, filter and join, over mul-
tiple data items. For fault-tolerance purposes, Spark
records all transformations carried out to build a dataset,
thus forming the so-called lineage graph.
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Figure 11: D-Stream processing model [65].

Under the traditional stream processing approach
based on a graph of continuous operators that process
tuples as they arrive, it is arguably difficult to achieve
fault tolerance and handle stragglers. As application
state is often kept by multiple operators, fault tolerance
is achieved either by replicating sections of the process-
ing graph or via upstream backup. The former demands
synchronisation of operators via a protocol such as Flux
[66] or other transactional protocols [67], whereas the
latter, when a node fails, requires parents to replay pre-
viously sent messages to rebuild the state.

To handle faults and stragglers more efficiently, Za-
haria et al. [65] proposed D-Streams, a discretised
stream processing based on Spark Streaming. As de-
picted in Figure 11, D-Streams follows a micro-batch
approach that organises stream processing as batch
computations carried out periodically over small time
windows. During a short time interval, D-Streams
stores the received data, which the cluster resources then
use as input dataset for performing parallel computa-
tions once the interval elapses. These computations pro-
duce new datasets that represent an intermediate state or
computation outputs. The intermediate state consists of
RDDs that D-Streams processes along with the datasets
stored during the next interval. In addition to providing
a strong unification with batch processing, this model
stores the state in memory as RDDs [64] that D-Streams
can deterministically recompute.



3.2.7. Other Solutions

System S, a precursor to IBM Streams?, is a mid-
dleware that organises applications as DAGs of oper-
ators and that supports distributed processing of both
structured and unstructured data streams. Stream Pro-
cessing Language (SPL) offers a language and engine
for composing distributed and parallel data-flow graphs
and a toolkit for building generic operators [44]. It pro-
vides language constructs and compiler optimisations
that utilise the performance of the Stream Processing
Core (SPC) [68]. SPC is a system for designing and de-
ploying stream processing DAGs that support both re-
lational operators and user-defined operators. It places
operators on containers that consist of processes run-
ning on cluster nodes. The SPC data fabric provides the
communication substrate implemented on top of a col-
lection of distributed servers.

Esc [69] is another stream processing engine that also
follows the data-flow scheme where programs are DAGs
whose vertices represent operations performed on the
received data and edges are the composition of opera-
tors. The Esc system, which uses the actor model for
concurrency, comprises a system and multiple machine
processes responsible for executing workers.

Other systems, such as TimeStream [70], use a DAG
abstraction for structuring an application as a graph of
operators that execute user-defined functions. Employ-
ing a graph abstraction is not exclusive to data stream
processing. Other big data processing frameworks [71]
also provide high-level APIs that enable developers to
specify computations as a DAG. The deployment of
such computations is performed by engines using re-
source management systems such as Apache YARN.

Google’s MillWheel [72] also employs a data flow
abstraction in which users specify a graph of transfor-
mations, or computations, that are performed on input
data to produce output data. MillWheel applications run
on a dynamic set of hosts where each computation can
run on one or more machines. A master node manages
load distribution and balancing by dividing each compu-
tation into a set of key intervals. Resource utilisation is
continuously measured to determine increased pressure,
in which case intervals are moved, split, or merged.

The Efficient, Lightweight, Flexible (ELF) stream
processing system [73] uses a decentralised architecture
with ‘in-situ’ data access where each job extracts data
directly from a Web server, placing it in compressed

2IBM has rebranded its data stream processing solution a few
times over the years. Although some papers mention System S and
InfoSphere Streams, hereafter we employ simply /BM Streams to re-
fer to IBM’s stream processing solution.
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buffer trees for local parsing and temporary storage.
The data is subsequently aggregated using shared re-
ducer trees mapped to a set of worker processes ex-
ecuted by agents structured as an overlay built using
Pastry Distributed Hash Table (DHT). ELF attempts to
overcome some of the limitations of existing solutions
that require data movement across machines and where
the data must be somewhat stale before it arrives at the
stream processing system.

4. Managed Cloud Systems

This section describes public cloud solutions for pro-
cessing streaming data and presents details on how elas-
ticity features are made available to developers and end
users. The section primarily identifies prominent tech-
nological solutions for processing of streaming data and
highlights their main features.

4.1. Amazon Web Services (AWS) Kinesis

A streaming data service can use Firehose for de-
livering data to AWS services such as Amazon Red-
shift, Amazon Simple Storage Service (S3), or Amazon
Elasticsearch Service (ES). It works with data produc-
ers or agents that send data to Firehose, which in turn
delivers the data to the user-specified destination or ser-
vice. When choosing S3 as the destination, Firehose
copies the data to an S3 bucket. Under Redshift, Fire-
hose first copies the data to an S3 bucket before noti-
fying Redshift. Firehose can also deliver the streaming
data to an ES cluster.

Firehose works with the notion of delivery streams to
which data producers or agents can send data records
of up to 1000 KB in size. Firehose buffers incoming
data up to a buffer size or for a given buffer interval
in seconds before it delivers the data to the destination
service. Integration with the Amazon CloudWatch [74]
enables monitoring the number of bytes transferred, the
number of records, the success rate of operations, time
taken to perform certain operations on delivery streams,
among others. AWS enforces certain limits on the rate
of bytes, records and number of operations per delivery
stream, as well as streams per region and AWS account.

Amazon Kinesis Streams is a service that enables
continuous data intake and processing for several types
of applications such as data analytics and reporting,
infrastructure log processing, and complex event pro-
cessing. Under Kinesis Streams producers continu-
ously push data to Streams, which is then processed
by consumers. A stream is an ordered sequence of
data records that are distributed into shards. A Kinesis



Streams application is a consumer of a stream that runs
on Amazon Elastic Compute Cloud (EC2). A shard has
a fixed data capacity regarding reading operations and
the amount of data read per second. The total capacity
of a stream is the aggregate capacity of all of its shards.
Integration with Amazon CloudWatch allows for moni-
toring the performance of the available streams. A user
can adjust the capacity of a stream by resharding it. Two
operations are allowed for respectively increasing or de-
creasing available capacity, namely splitting an existing
shard or merging two shards.

4.2. Google Dataflow

Google Cloud Dataflow [9] is a programming model
and managed service for developing and executing a va-
riety of data processing patterns such as Extract, Trans-
form, and Load (ETL) tasks, batch processing, and con-
tinuous computing.

Dataflow’s programming model enables a developer
to specify a data processing job that is executed by the
Cloud Dataflow runner service. A data processing job is
specified as a Pipeline that consists of a directed graph
of steps or Transforms. A transform takes one or more
PCollection’s — that represent data sets in the pipeline
— as input, performs the user-provided processing func-
tion on the elements of the PCollection and produces
an output PCollection. A PCollection can hold data of a
fixed size, or an unbounded data set from a continuously
updating source. For unbounded sources, Dataflow en-
ables the concept of Windowing where elements of the
PCollection are grouped according to their timestamps.
A Trigger can be specified to determine when to emit
the aggregate results of each window. Data can be
loaded into a Pipeline from various /O Sources by using
the Dataflow SDKs as well as written to output Sinks us-
ing the sink APIs. As of writing, the Dataflow SDKs are
being open sourced under the Apache Beam incubator
project [75].

The Cloud Dataflow managed service can be used
to deploy and execute a pipeline. During deployment,
the managed service creates an execution graph, and
once deployed the pipeline becomes a Dataflow job.
The Dataflow service manages services such as Google
Compute Engine [76] and Google Cloud Storage [77]
to run a job, allocating and releasing the necessary re-
sources. The performance and execution details of the
job are made available via the Monitoring Interface or
using a command-line tool. The Dataflow service at-
tempts to perform certain automatic job optimisations
such as data partitioning and parallelisation of worker
code, optimisations of aggregation operations or fusing
transforms in the execution graph.
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On-the-fly adjustment of resource allocation and data
partitioning are also possible via Autoscaling and Dy-
namic Work Rebalancing. For bounded data in batch
mode Dataflow chooses the number of VMs based on
both the amount of work in each step of a pipeline and
the current throughput. Although autoscaling can be
used by any batch pipeline, as of writing autoscaling
for streaming-mode is experimental and participation is
restricted to invited developers. It is possible, however,
to adjust the number of workers assigned to a streaming
pipeline manually, which replaces a running job with a
new job while preserving the state information.

4.3. Azure Stream Analytics

Azure Stream Analytics (ASA) enables real-time
analysis of streaming data from several sources such as
devices, sensors, websites, social media, applications,
infrastructures, among other sources [78].

A job definition in ASA comprises data inputs, a
query, and data output. Input is the data streaming
source from which the job reads the data, a query trans-
forms the received data, and the output is to where the
job sends results. Stream Analytics provides integration
with multiple services and can ingest streaming data
from Azure Event Hubs and Azure IoT Hub, and his-
torical data from Azure Blob service. It performs an-
alytic computations that are specified in a declarative
language; a T-SQL variant termed as Stream Analytics
Query Language. Results from Stream Analytics can
be written to several data sinks such as Azure Storage
Blobs or Tables, Azure SQL DB, Event Hubs, Azure
Service Queues, among other sinks. They can also be
visualised or further processed using other tools de-
ployed on Azure compute cloud. As of writing, Stream
Analytics does not support UDFs for data transforma-
tion.

The allocation of processing power and resource ca-
pacity to a Stream Analytics job is performed consid-
ering Streaming Units (SUs) where an SU represents
a blend of CPU capacity, memory, and read/write data
rates. Certain query steps can be partitioned, and some
SUs can be allocated to process data from each parti-
tion, hence increasing throughput. To enable partition-
ing the input data source must be partitioned and the
query modified to read from a partitioned data source.

5. Elasticity in Stream Processing Systems

Over time several types of applications have benefited
from resource elasticity, a key feature of cloud comput-
ing [79]. As highlighted by Lorido-Botran et al., elas-
ticity in cloud environments is often accomplished via a



Monitoring, Analysis, Planning and Execution (MAPE)
process where:

1. application and system metrics are monitored,

2. the gathered information is analysed to assess cur-
rent performance and utilisation, and optionally
predict future load;

3. based on an auto-scaling policy an auto-scaler cre-
ates an elasticity plan on how to add or remove
capacity; and

4. the plan is finally executed.

After analysing performance data, an auto-scaler may
choose to adjust the number of resources (e.g. add or re-
move compute resources) available to running, newly
submitted, applications. Managing elasticity of data
stream processing applications often requires solving
two inter-related problems: (i) allocating or releasing
IT resources to match an application workload; and
(ii) devising and performing actions to adjust the ap-
plication to make use of the additional capacity or re-
lease previously allocated resources. The first problem,
which consists in modifying the resource pool available
for a stream processing application, is termed here as
elastic resource management. A decision made by a
resource manager to add/remove resource capacity for
a stream processing application is referred to as scale
outfin plan’®. We refer to the actions taken to adjust an
application during a scale out/in plan as elasticity ac-
tions.

Similarly to other services running in the cloud, elas-
tic resource management for data stream processing
applications can make use of two types of elasticity,
namely vertical and horizontal (Figure 12), which have
their impact on the kind of elastic actions for adapting
an application. Vertical elasticity consists in allocating
more resources such as CPU, memory and network ca-
pacity on a host that has previously been allocated to a
given application. As described later, stream processing
can benefit from this type of elasticity by, for instance,
increasing the instances of a given operator (i.e. oper-
ator fission [80]). Horizontal elasticity consists essen-
tially in allocating additional computing nodes to host a
running application.

To make use of additional resources and improve ap-
plication performance, auto-scaling operations may re-
quire adjusting applications dynamically by, for exam-
ple, performing optimisations in their execution graphs,

3The term scale out/in is often employed in horizontal elasticity,
but a plan can also be scale up/down when using vertical elasticity.
For brevity, we use only scale out/in in the rest of the text
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Figure 12: Types of elasticity used by elastic resource management.

or modifying intra-query parallelism by increasing the
number of instances of certain operators. Previous work
has discussed approaches on reconfiguration schemes
to modify the placement of stream processing operators
dynamically to adjust an application to current resource
conditions or provide fault-tolerance [81]. The litera-
ture on data stream processing often employs the term
elastic to convey operator placement schemes that en-
able applications to deliver steady performance as their
workload increases, not necessarily exploring the types
of elasticity mentioned above.

Although the execution of scale out/in plans presents
similarities with other application scenarios (e.g.
adding/removing resources from a resource pool), ad-
justing a stream processing system and applications dy-
namically to make use of the newly available capacity
or release unused resources is not a trivial task. The
enforcement of scale out/in plans faces multiple chal-
lenges. Horizontal elasticity often requires adapting
the graph of processing elements and protocols, export-
ing and saving operator state for replication, fault tol-
erance and migration. As highlighted by Sattler and
Beier [38], performing parallel processing is often dif-
ficult in the case of window- or sequence-based oper-
ators including CEP operators due to the amount of
state they keep. Elastic operations, such as adding
nodes or removing unused capacity, may require at least
re-routing the data, changing the manner an incoming
dataflow is split among parallel processing elements,
among other issues. Such adjustments are costly to per-
form, particularly if processing elements maintain state.
As stream processing queries are often treated as long
running that cannot be restarted without incurring a loss
of data, the initial operator placement (also called task
assignment), where processing elements are deployed
on available computing resources becomes more criti-
cal than in other systems.

Elasticity actions Static

. Resource pool
Online ) .
reconfiguration
Application
reconfiguration

Figure 13: Elasticity actions for stream processing engines.

Given how important the initial task assignment is to
guarantee the elasticity of stream processing systems,



we classify elasticity actions into two main categories,
namely static and online as depicted in Figure 13. When
considering the operator DAG based solutions, static
techniques comprise optimisations made to modify the
original graph (i.e. the logical plan) to improve task par-
allelism and operator placement, optimise data trans-
fers, among other goals [80]. Previous work provided
a survey of various static techniques [81]. Online ap-
proaches comprise both actions to modify the pool of
available resources and dynamic optimisations carried
out to adjust applications dynamically to utilise newly
allocated resources. The next sections provide more
details on how existing solutions address challenges in
these categories with a focus on online techniques.

5.1. Static Techniques

A review of strategies for placing processing oper-
ators in early distributed data stream processing sys-
tems has been presented in previous work [81]. Sev-
eral approaches for optimising the initial task assign-
ment or scheduling exploit intra-query parallelism by
ensuring that certain operators can scale horizontally to
support larger numbers of incoming tuples, thus achiev-
ing greater throughput.

R-Storm [82] handles the problem of task assign-
ment in Apache Storm by providing custom resource-
aware scheduling schemes. Under the considered ap-
proach, each task in a Storm topology has soft CPU and
bandwidth requirements and a hard memory require-
ment. The available cluster nodes, on the other hand,
have budgets for CPU, bandwidth and memory. While
considering the throughput contribution of a data sink,
given by the rate of tuples it is processing, R-Storm aims
to assign tasks to a set of nodes that increases overall
throughput, maximises resource utilisation, and respects
resource budgets. The assignment scenario results is
a quadratic multiple 3-dimensional knapsack problem.
After reviewing existing solutions with several variants
of knapsack problems, the authors concluded that ex-
isting methods are computationally expensive for dis-
tributed stream processing scenarios. They proposed
scheduling algorithms that view a task as a vector of
resource requirements and nodes as vectors of resource
budgets. The algorithm uses the Euclidean distance be-
tween a task vector and node vectors to select a node
to execute a task. It also uses heuristics that attempt to
place tasks that communicate in proximity to one an-
other, that respect hard constraints, and that minimise
resource waste.

Pietzuch efr al. [83] create a Stream-Based Over-
lay Network (SBON) between a stream processing en-
gine and the physical network. SBON manages oper-
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ator placement while taking into account network la-
tency. The system architecture uses an adaptive opti-
misation technique that creates a multidimensional Eu-
clidean space, termed as the cost space, over which
the placement is projected. Optimisation techniques
such as spring relaxation are used to compute operator
placement using this mathematical space. A proposed
scheme maps a solution obtained using the cost space
onto physical nodes.

The scheme proposed by Zhou ef al. also [84]
for the initial operator placement attempts to minimise
the communication cost whereas the dynamic approach
considers load balancing of scheduled tasks among
available resources. The initial placement schemes
group operators of a query tree into query fragments and
try to minimise the number of compute nodes to which
they are assigned. Ahmad and Cetintemel [85] also pro-
posed algorithms for the initial placement of operators
while minimising the bandwidth utilised in the network,
even though it is assumed that the algorithms could be
applied periodically.

5.2. Online Techniques

Systems for providing elastic stream processing on
the cloud generally comprise two key elements:

e a subsystem that monitors how the stream process-
ing system is utilising the available resources (e.g.
use of CPU, memory and network resources) [86]
and/or other service-level metrics (e.g. number of
tuples processed over time, tail end-to-end latency
[87], critical paths [88]) and tries to identify bottle-
neck operators; and

e a scaling policy that determines when scale out/in
plans should be performed [89].

As mentioned earlier, in addition to adding/removing
resources, a scale out/in plan is backed by mechanisms
to adjust the query graph to make efficient use of the up-
dated resource pool. Proposed mechanisms consist of,
for instance, increasing operator parallelism; rewriting
the query graph based on certain patterns that are em-
pirically proven to improve performance and rewriting
rules specified by the end user; and migrating operators
to less utilised resources.

Most solutions are application and workload agnos-
tic — i.e. do not attempt to model application behaviour
or detect changes in the incoming workload [90] — and
offer methods to: (i) optimise the initial scheduling,
when processing tasks are assigned to and deployed
onto available resources; and/or (ii) reschedule process-
ing tasks dynamically to take advantage of an updated



resource pool. Operators are treated as black boxes and
(re)scheduling and elastic decisions are often taken con-
sidering a performance metric. Certain solutions that
are not application-agnostic attempt to identify work-
load busts and behaviours by considering characteristics
of the incoming data as briefly described in Section 5.3.

Sattler and Beier [38] argue that distributing query
nodes or operators can improve reliability “by intro-
ducing redundancy, and increasing performance and/or
scalability by load distribution”. They identify opera-
tor patterns — e.g. simple standby, check-pointing, hot
standby, stream partitioning and pipelining — for build-
ing rules for restructuring the physical plan of an ap-
plication graph, which can increase fault tolerance and
achieve elasticity. They advocate that re-writings should
be performed when a task becomes a bottleneck; i.e. it
cannot keep up with the rate of incoming tuples. An
existing method is used to scan the execution graph
and find critical paths based on monitoring information
gathered during query execution [88].

While dynamically adjusting queries with stateless
operators can be difficult, modifying a graph of state-
ful operators to increase intra-query parallelism is more
complex. As stated by Fernandez et al. [86], during ad-
justment, operator “state must be partitioned correctly
across a larger set of VMs”. Fernandez et al. hence pro-
pose a solution to manage operator state, which they in-
tegrate into a stream processing engine to provide scale
out features. The solution offers primitives to export
operator state as a set of tuples, which is periodically
check-pointed by the processing system. An operator
keeps state regarding its processing, buffer contents, and
routeing table. During a scale out operation, the key
space of the tuples that an operator handles is reparti-
tioned, and its processing state is split across the new
operators. The system measures CPU utilisation peri-
odically to detect bottleneck operators. If multiple mea-
surements are above a given threshold, then the scale-
out coordinator increases the operator parallelism.

Previous work has also attempted to improve the as-
signment of tasks and executors to available resources
in Storm and to reassign them dynamically at runtime
according to resource usage conditions. T-Storm [91]
(i.e. Traffic-aware Storm), for instance, aims to reduce
inter-process and inter-node communication, which is
shown to degrade performance under certain workloads.
T-Storm monitors workload and traffic load during run-
time. It provides a scheduler that generates a task sched-
ule periodically, and a custom Storm scheduler that
fetches the schedule and executes it by assigning ex-
ecutors accordingly. Aniello ef al. provide a similar
approach, with two custom Storm schedulers, one for
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offline static task assignment and another for dynamic
scheduling [92]. Performance monitoring components
are also introduced, and the proposed schedulers aim to
reduce inter-process and inter-node communication.

Lohrmann et al. [89] introduced policies that use ap-
plication or system performance metrics such as CPU
utilisation thresholds, the rate of tuples processed per
operator, and tail end-to-end latency. They propose a
strategy to provide latency guarantees in stream pro-
cessing systems that execute heady UDF data flows
while aiming to minimise resource utilisation. The re-
active strategy (i.e. ScaleReactively) aims to enforce la-
tency requirements under varying load conditions with-
out permanently overprovisioning resource capacity.
The proposed solution assumes homogeneous cluster
nodes, effective load balancing of elements executing
UDFs, and elastically scalable UDFs. The system archi-
tecture comprises elements for monitoring the latency
incurred by operators in a job sequence. The reactive
strategy uses two techniques, namely Rebalance and
ResolveBottlenecks. The former adjusts the parallelism
of bottleneck operators whereas the latter, as the name
implies, resolves bottlenecks by scaling out so that the
first technique can be applied again at later time.

The Esc stream processing system [69] comprises
several components for task scheduling, performance
monitoring, management of a resource pool to/from
which machines are added/released, as well as applica-
tion adaptation decisions. A processing element pro-
cess executes UDFs and contains a manager and multi-
ple workers, which serve respectively as a gateway for
the element itself and for executing multiple instances
of the UDF. The PE manager employs a function for
balancing the load among workers. Each worker con-
tains a buffer or queue and an operator. The autonomic
manager of the system process monitors the load of ma-
chines and the length of the worker processes. For adap-
tation purposes, the autonomic manager can add/remove
machines, replace the load balancing function of a PE
manager and spawn/kill new workers, kill the PE man-
ager and its workers altogether. The proposed elastic
policies are based on load thresholds that, when ex-
ceeded, trigger the execution of actions such as attach-
ing new machines.

StreamCloud (SC) [93] provides multiple cloud par-
allelisation techniques for splitting stream processing
queries that it assigns to independent subclusters of
computing resources. According to the chosen tech-
nique, the number of resulting subqueries depends on
the number of stateful operators that the original query
contains. A subquery comprises a stateful operator and
all intermediate stateless operators until another state-



ful operator or a data sink. SC also introduces buckets
that receive output tuples from a subcluster. Bucket-
Instance Maps (BIMs) control the distribution of buck-
ets to downstream subclusters, which may be dynami-
cally modified by Load Balancers (LBs). A load bal-
ancer is an operator that distributes tuples from a sub-
query to downstream subqueries. To manage elasticity,
SC employs a resource management architecture that
monitors CPU utilisation and, if the utilisation is out
of pre-determined lower or upper thresholds, it can: ad-
justs the system to rebalance the load; or provision or
releases resources.

Heinze et al. [87] attempt to model the spikes in
a query’s end-to-end latency when moving operators
across machines, while trying to reduce the number of
latency violations. Their target system, FUGU, consid-
ers two classes of scaling decisions, namely mandatory,
which are operator movements to avoid overload; and
optional, such as releasing an unused host during light
load. FUGU employs the Flux protocol for migrating
stream processing operators [66]. Algorithms are pro-
posed for scale out/in operations as well as operator
placement. The scale-out solution extends the subset
sum algorithm, where subsets of operators whose total
load is below a pre-established threshold are considered
to remain in a host. To pick a final set, the algorithm
takes into consideration the latency spikes caused by
moving the operators that are not in the set. For scale-in,
FUGU releases a host with minimum latency spike. The
operator placement is an incremental bin packing prob-
lem, where bins are nodes with CPU capacity, and items
are operators with CPU load as weight. Memory and
network are second-level constraints that prevent plac-
ing operators on overloaded hosts. A solution based on
the FirstFit decreasing heuristic is provided.

Gedik et al. [94] tackle the challenge of auto-
parallelising distributed stream processing engines in
general while focusing on IBM Streams. As defined
by Gedik et al. [94], “auto-parallelisation involves lo-
cating regions in the application’s data flow graph that
can be replicated at run-time to apply data partition-
ing, in order to achieve scale.” Their work proposes an
elastic auto-parallelisation approach that handles state-
ful operators and general purpose applications. It also
provides a control algorithm that uses metrics such as
the blocking time at the splitter and throughput to de-
termine how many parallel channels provide the best
throughput. Data splitting for a parallel region can be
performed in a round-robin manner if the region is state-
less, or using a hash-based scheme otherwise.

Also considering IBM Streams, Tang and Gedik [37]
address task and pipeline parallelism by determining
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points of a data flow graph where adding additional
threads can level out the resource utilisation and im-
prove throughput. They consider an execution model
that comprises a set of threads, where each thread ex-
ecutes a pipeline whose length extends from a start-
ing operator port to a data sink or the port of another
thread’s first operator. They use the notion of utility to
model the goodness of including a new thread and pro-
pose an optimisation algorithm find and evaluating par-
allelisation options. Gedik ef al. [36] propose a solution
for IBM Streams exploiting pipeline parallelism and
data parallelism simultaneously. They propose a tech-
nique that segments a chain-like data flow graph into
regions according to whether the operators they contain
can be replicated or not. For the parallelisable regions,
replicated pipelines are created preceded and followed
by, respectively split and merge operators.

Wu and Tan [67] discuss technical challenges that
may require a redesign of distributed stream process-
ing systems, such as maintaining large amounts of state,
workload fluctuation and multi-tenant resource sharing.
They introduce ChronoStream, a system to support elas-
ticity and high availability in latency-sensitive stream
computing. To facilitate elasticity and operator migra-
tion, ChronoStream divides the application-level state
into a collection of computation slices that are periodi-
cally check-pointed and replicated to multiple specified
computing nodes using locality-sensitive techniques. In
the case of component failure or workload redistribu-
tion, it reconstructs and reschedules slice computation.
Unlike D-Streams, ChronoStream provides techniques
for tracking the progress of computation for each slice
to reduce the overhead of reconstructing if information
about the lineage graph is lost from memory.

STream processing ELAsticity (Stela) is a system ca-
pable of optimising throughput after a scaling out/in
operation and minimising the interruption to compu-
tation while the operation is being performed [95]. It
uses Expected Throughput Percentage (ETP), which is
a per-operator performance metric defined as the “fi-
nal throughput that would be affected if the operator’s
processing speed were changed”. While evaluation re-
sults demonstrate that ETP performs well as a post-
scaling performance estimate, the work considers state-
less operators whose migration can be performed with-
out copying large amounts of application-related data.
Stela is implemented as an extension to Storm’s sched-
uler. Scale out/in operations are user-specified and are
utilised to determine which operators are given more re-
sources or which operators lose previously allocated re-
sources.

Hidalgo et al. [96] employ operator fission to achieve



elasticity by creating a processing graph that increases
or decreases the number of processing operators to im-
prove performance and resource utilisation. They intro-
duce two algorithms to determine the state of an oper-
ator, namely a short-term algorithm that evaluates load
over short periods to detect traffic peaks; and (ii) a long-
term algorithm that finds traffic patterns. The short-
term algorithm compares the actual load of an operator
against upper and lower thresholds. The long-term al-
gorithm uses a Markov chain based on operator history
to evaluate state transitions over the analysed samples to
define the matrix transition. The algorithm estimates for
the next time-window the probability that an operator
reaches one of the three possible states (i.e. overloaded,
underloaded, stable).

In the recent past, researchers and practitioners have
also exploited the use of containers and lightweight
resource virtualisation to perform migration of stream
processing operators. Pahl and Lee [97] review con-
tainer technology as means to tackle elasticity in highly
distributed environments comprising edge and cloud
computing resources. Both containers and virtualisa-
tion technologies are useful when adjusting resource ca-
pacity during scale out/in operations, but containers are
more lightweight, portable and provide more agility and
flexibility when testing and deploying applications.

To support operator placement and migration in
Mobile Complex Event Processing (MCEP) systems,
Ottenwilder et al. [98] present techniques that exploit
system characteristics and predict mobility patterns for
planning operator-state migration in advance. The en-
visioned infrastructure comprises a federation of dis-
tributed brokers whose hierarchy comprises a combina-
tion of cloud and fog resources. Mobile nodes connect
to the nearest broker, and each operator along with its
state are kept in their own virtual machine. The problem
tackled consists of finding a sequence of placements and
migrations for an application graph so that the network
utilisation is minimised and the end-to-end latency re-
quirements are met. The system performs an incremen-
tal placement where, a placement decision is enforced
if its migration costs can be amortised by the gain of
the next placement decision. A migration plan is dy-
namically updated for each operator and a time-graph
model is used for selecting migration targets and for ne-
gotiating the plans with dependent operators to find the
minimum cost plans for each operator and reserve re-
sources accordingly. The link load created by events is
estimated considering the most recent traffic measure-
ments, while latency is computed via regular ping mes-
sages or using Vivaldi coordinates [99].

Table 1 summarises a select number of solutions that
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aim to provide elastic data stream processing. The table
details the infrastructure targeted by the solutions (i.e.
cluster, cloud, fog); the types of operators considered
(i.e. stateless, stateful); the metrics monitored and taken
into account when planning a scale out/in operation; the
type of elasticity envisioned (i.e. vertical or horizontal);
and the elasticity actions performed during the execu-
tion of a scale out/in operation.

5.3. Change and Burst Detection

Another approach that may be key to addressing elas-
ticity in data stream processing is to use techniques to
detect changes or bursts in the incoming data feeding
a stream processing engine. This approach does not ad-
dress elasticity per se, but it can be used with other tech-
niques to trigger scale out/in operations such as adding
or removing resources and employing graph adaptation.

For instance, Zhu and Shasha [100] introduce a
shifted wavelet tree data structure for detecting bursts
in aggregates of time series based data streams. They
considered three types of sliding windows aggregates:

o Landmark windows: aggregates are computed
from a specific time point.

e Sliding Windows: aggregates are calculated based
on a window of the last n values.

o Damped window: the weights of data decrease ex-
ponentially into the past.

Krishnamurthy et al. [90] propose a sketch data struc-
ture for summarising network traffic at multiple levels
on top of which time series forecast models are applied
to detect significant changes in flows that present large
forecast errors. Previous work provides a literature re-
view on the topic of change and burst deception. Tran
et al. [101], for instance, present a survey on change
detection techniques for data stream processing.

6. Distributed and Hybrid Architecture

Most distributed data stream processing systems have
been traditionally designed for cluster environments.
More recently, architectural models have emerged for
more distributed environments spanning multiple data
centres or for exploiting the edges of the Internet (i.e.,
edge and fog computing [10, 102]).Existing work aims
to use the Internet edges by trying to place certain
stream processing elements on micro data centres (often
called Cloudlets [103]) closer to where the data is gen-
erated [104], transferring events to the cloud in batches



Table 1: Online techniques for elastic stream processing.

Target In-

Solution frastructure Operator type Metrics for Elasticity Elasticity
Type Actions
Fernandez et al. cloud stateful Resource use (CPU) horizontal ~ °P" crator state C.h eck-pointing,
[86] fission
T-Storm [91] cluster stateless ) Resource use (CPU, N/A executor reassignment,
inter-executor traffic load) topology rebalance
Adaptive Storm stateful bolts, Resource use (CPU, inter-node executor placement, dynamic
cluster stateless N/A .
[92] traffic) executor reassignment
operators
Nephele SPE [89] cluster stateless System metrics (task and vertical ~ data batching, operator fission
channel latency)
. replace load balancing
Esc [69] cloud stateless' Resource use (machine load), horizontal functions dynamically,
system metrics (queue lengths) .
operator fission
StreamCloud (SC) cluster or stateless and ‘ query sphtqng and placement,
private Resource use (CPU) horizontal compiler for query
[93] 5 stateful R
cloud parallelisation
FUGU [87] cloud stateful Resource use (CPU, net.work horizontal operator migration, query
and memory consumption) placement
stateless and System metrics (congestion operator fission, state
Gedik et al. [94] cluster partitioned yste ) & vertical check-pointing, operator
index, throughput) L E
stateful migration
vertical and operator state check-pointing,
ChronoStream [67] cloud stateful N/A . 3 replication, migration,
horizontal” .
parallelism
System metrics (impacted . 3 . Lo
Stela [95] cloud stateless horizontal®  operator fission and migration
throughput)
System metrics (load on event onerator placement and
MigCEP [98] cloud + fog stateful streams, inter-operator N/A P p

latency)

migration

T'Esc experiments consider only stateless operators.
2 Nodes must be pre-configured with StreamCloud.

3 Execution of scale out/in operations are user-specified, not triggered by the system.

[105], or by exploiting mobile devices in the fog for
stream processing [106]. Proposed architecture aims
to place data analysis tasks at the edge of the Internet
in order to reduce the amount of data transferred from
sources to the cloud, improve the end-to-end latency, or
offload certain analyses from the cloud [43].

Despite many efforts on building infrastructure, such
as adapting OpenStack to run on cloudlets, much of the
existing work on stream processing, however, remains
at a conceptual or architectural level without concrete
software solutions or demonstrated scalability. Appli-
cations are still emerging. This section provides a non-
exhaustive list of work regarding virtualisation infras-
tructure for stream processing, and placement and re-
configuration of stream processing applications.
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6.1. Lightweight Virtualisation and Containers

Pahl et al. [107] and Ismail er al. [108] discussed
the use of lightweight virtualisation and the need for
orchestrating the deployment of containers as key re-
quirements to address challenges in infrastructure com-
prising fog and cloud computing, such as improving ap-
plication deployment speed, reducing overhead and data
transferred over the network. Stream processing is of-
ten viewed as a motivating scenario. Yangui et al. [109]
propose a Platform as a Service (PaaS) architecture for
cloud and fog integration. A proof-of-concept imple-
mentation is described, which extends Cloud Foundry
[110] to ease testing and deployment of applications
whose components can be hosted either in the cloud or
fog resources.

Morabito and Beijar [111] designed an Edge Compu-



tation Platform for capillary networks [112] that takes
advantage of lightweight containers to achieve resource
elasticity. The solution exploits single board computers
(e.g. Raspberry Pi 2 B, and Odroid C1+) as gateways
where certain functional blocks (i.e. data compression
and data processing) can be hosted. Similarly Petrolo et
al. [113] focus on a gateway design for Wireless Sen-
sor Network (WSN) to optimise the communication and
make use of the edges. The gateway, designed for a
cloud of things, can manage semantic-like things and
work as an end-point for data presentation to users.

Hochreiner er al. [114] propose the Vlenna ecosys-
tem for elastic Stream Processing (VISP) which exploits
the use of lightweight containers to enable application
deployment on hybrid environments (e.g. clouds and
edge resources), a graphical interface for easy assem-
ble of processing graphs, and reuse of processing op-
erators. To achieve elasticity, the ecosystem runtime
component monitors performance metrics of operators
instances, the load on the message infrastructure, and
introspection of the individual messages in the message
queue.

6.2. Application Placement and Reconfiguration

Task scheduling considering hybrid scenarios has
been investigated in other domains, such as mobile
clouds [115] and heterogeneous memory [116]. For
stream processing, Benoit et al. [117] show that
scheduling linear chains of processing operators onto a
cluster of heterogeneous hardware is an NP-Hard prob-
lem, whereas placement of virtual computing resources
and network flows onto hybrid infrastructure has also
been investigated in other contexts [118].

For stream processing, Cardellini et al. [119] in-
troduce an integer programming formulation that takes
into account resource heterogeneity for the Optimal
Distributed Stream Processing Problem (ODP). They
propose an extension to Apache Storm to incorporate
an ODP-based scheduler, which estimates networks la-
tency via a network coordination system built using the
Vivaldi algorithm [99]. It has been shown, however,
that assigning stream processing operators on VMs and
placing them across multiple geographically distributed
data centres while minimising the overall inter data-
centre communication cost, can often be classified as
an NP-Hard [120] problem or even NP-Complete [121].
Over time, however, cost-aware heuristics have been
proposed for assigning stream processing operators to
VMs placed across multiple data centres [120, 122].

Sajjad and Danniswara [42] introduce a stream pro-
cessing solution, i.e. SpanEdge, that uses central and
edge data centres. SpanEdge follows a master-worker
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architecture with hub and spoke workers, where a hub-
worker is hosted at a central data centre and a spoke-
worker at an edge data centre. SpanEdge also enables
global and local tasks, and its scheduler attempts to
place local tasks near the edges and global tasks at cen-
tral data centres to minimise the impact of the latency
of Wide Area Network (WAN) links interconnecting the
data centres.

Mehdipour et al. [123] introduce a hierarchical ar-
chitecture for processing streamlined data using fog and
cloud resources. They focus on minimising communi-
cation requirements between fog and cloud when pro-
cessing data from IoTs devices. Shen ef al. [124] ad-
vocate the use of Cisco’s Connected Streaming Analyt-
ics (CSA) for conceiving an architecture for handling
data stream processing queries for IoT applications by
exploiting data centre and edge computing resources.
Connected Streaming Analytics (CSA) provides a query
language for continuous queries over streams.

Geelytics is a system tailored for IoT environments
that comprise multiple geographically distributed data
producers, result consumers, and computing resources
that can be hosted either on the cloud or at the network
edges [125]. Geelytics follows a master-worker archi-
tecture with a publish/subscribe service. Similarly to
other data stream processing systems, Geelytics struc-
tures applications as DAGs of operators. Unlike other
systems, however, it enables scoped tasks, where a user
specifies the scope granularity of each task comprising
the processing graph. The scope granularity of tasks
and data-consumer scoped subscriptions are used to de-
vise the execution plan and deploy the resulting tasks
according to the geographical location of data produc-
ers.

7. Future Directions

Organisations often demand not only online process-
ing of large amounts of streaming data, but also solu-
tions that can perform computations on large data sets
by using models such as MapReduce. As a result, big
data processing solutions employed by large organisa-
tions exploit hybrid execution models (e.g. using batch
and online execution) that can span multiple data cen-
tres. In addition to providing elasticity for computing
and storage resources, ideally, a big data processing ser-
vice should be able to allocate and release resources on
demand. This section highlights some future directions.

7.1. SDN and In-Transit Processing

Networks are becoming increasingly programmable
by using several solutions such as Software Defined



Network (SDN) [126] and Network Functions Virtu-
alization (NFV), which can provide mechanisms re-
quired for allocating network capacity for certain data
flows both within and across data centres with certain
computing operations been performed in-network. In-
transit stream processing can be carried out where cer-
tain processing elements, or operators, are placed along
the network interconnecting data sources and the cloud.
This approach raises security and resource management
challenges. In scenarios such as IoT, having compo-
nents that perform processing along the path from data
sources to the cloud can increase the number of hops
susceptible to attacks. Managing task scheduling and al-
location of heterogeneous resources whilst offering the
elasticity with which cloud users are accustomed is also
difficult as adapting an application to current resource
and network conditions may require migrating elements
of a data flow that often maintain state.

Most of the existing work on multi-operator place-
ment considered network metrics such as latency and
bandwidth while proposing decentralised algorithms,
without taking into account that the network can be
programmed and capacity allocated to certain network
flows. The interplay between hybrid models and SDN
as well as joint optimisation of application placement
and flow routing can be better explored. The optimal
placement of data processing elements and adaptation
of data flow graphs, however, are hard problems.

In addition to placing operators on heterogeneous en-
vironments, a key issue is deciding which operators are
worth placing on edge computing resources and which
should remain in the cloud. Emerging cognitive assis-
tance scenarios [3] offer interesting use cases where ma-
chine learning models can be trained on the cloud, and
once trained they can be deployed on edge computing
resources. The challenge, however, is to identify even-
tual concept drifts that in turn require retraining a model
and potentially adapting the execution data flow.

7.2. Programming Models for Hybrid and
Highly Distributed Architecture

Frameworks that provide high-level programming ab-
stractions have been introduced in recent past to ease
the development and deployment of big data applica-
tions that use hybrid models [8, 9]. Platform bindings
have been provided to deploy applications developed
using these abstractions on the infrastructure provided
by commercial public cloud providers and open source
solutions. Although such solutions are often restricted
to a single cluster or data centre, efforts have been made
to leverage resources from the edges of the Internet to
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perform distributed queries [127] or to push frequently-
performed analytics tasks to edge resources [125]. With
the growing number of scenarios where data is collected
by a plethora of devices, such as in IoT and smart cities,
and requires processing under low latency, solutions are
increasingly exploiting resources available at the edges
of the Internet (i.e. edge and fog computing). In addi-
tion to providing means to place data processing tasks
in such environments while minimising the use of net-
work resources and latency, efficient methods to man-
age resource elasticity in these scenarios should be in-
vestigated. Moreover, high-level programming abstrac-
tions and bindings to platforms capable of deploying
and managing resources under such highly distributed
scenarios are desirable.

Under the Apache Beam project [75], efforts have
been made towards providing a unified SDK while
enabling processing pipelines to be executed on dis-
tributed processing back-ends such as Apache Spark
[64] and Apache Flink [62]. Beam is particularly use-
ful for embarrassingly parallel applications. There is
still a lack of unified SDKs that simplify application
development covering the whole spectrum, from data
collection at the internet edges to processing at micro
data centres (more closely located to the Internet edges)
and data centres. Concerning resource management for
such environments, several challenges arise regarding
the network infrastructure and resource heterogeneity.
Despite the challenges regarding state management for
stream processing systems, container-based solutions
could facilitate the deployment and elasticity manage-
ment under such environments [128], and solutions such
as Apache Quarks/Edgent [12] can be leveraged to per-
form certain analyses at the Internet edges.

8. Summary and Conclusions

This paper discussed solutions for stream process-
ing and techniques to manage resource elasticity. It
first presented how stream processing fits in the over-
all data processing framework often employed by large
organisations. Then it presented a historical perspec-
tive on stream processing engines, classifying them into
three generations. After that, we elaborated on third-
generation solutions and discussed existing work that
aims to manage resource elasticity for stream process-
ing engines. In addition to discussing the management
of resource elasticity, we highlighted the challenges in-
herent to adapting stream processing applications dy-
namically in order to use additional resources made
available during scale out operations, or release unused
capacity when scaling in. The work then discussed



emerging distributed architecture for stream processing
and future directions on the topic. We advocate the need
for high-level programming abstractions that enable de-
velopers to program and deploy stream processing ap-
plications on these emerging and highly distributed ar-
chitecture more easily, while taking advantage of re-
source elasticity and fault tolerance.
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