Renewable-aware Geographical Load Balancing of Web
Applications for Sustainable Data Centers

Adel Nadjaran Toosi?®, Chenhao Qu®, Marcos Dias de Assuncao®, Rajkumar
Buyya®

?Cloud Computing and Distributed Systems Laboratory, School of Computing and
Information Systems, The University of Melbourne, Australia
bInria, ENS de Lyon, France

Abstract

The ever-increasing demand for web applications deployed across multiple
data centers results in large electricity costs for service providers and signif-
icant impact on the environment. This has motivated service providers to
move towards more sustainable data centers powered by renewable or green
sources of energy, such as solar or wind. However, efficient utilization of
green energy to service web applications is a challenging problem due to in-
termittency and unpredictability of both application workload and renewable
energy availability. One possible solution to reduce cost and increase renew-
able energy utilization is to exploit the spatio-temporal variations in on-site
power and grid power prices by balancing the load among multiple data cen-
ters geographically distributed. In this paper, we propose a framework for
reactive load balancing of web application requests among Geo-distributed
sustainable data centers based on the availability of renewable energy sources
on each site. A system prototype is developed, its underlying design and al-
gorithms are described, and experiments are conducted with it using real
infrastructure (Grid’5000 in France) and workload traces (real traffic to En-
glish Wikipedia). The experimental results demonstrate that our approach
can reduce cost and brown energy usage with efficient utilization of green
energy and without a priori knowledge of future workload, availability of

Email addresses: anadjaran@unimelb.edu.au (Adel Nadjaran Toosi),
cqu@student.unimelb.edu.au (Chenhao Qu),
marcos.dias.de.assuncao@ens-lyon.fr (Marcos Dias de Assungao),
rbuyya@unimelb.edu.au (Rajkumar Buyya)

Preprint submitted to Elsevier February 6, 2017

renewable energy, and grid electricity prices.

1. Introduction

Data centers are known to be consuming enormous amount of power lead-
ing to high operational cost and high carbon footprint on the environment.
According to a report from NRDC! [1], in 2013, US data centers alone con-
sumed 91 billion kilowatt-hours of electricity, equivalent to two-year power
consumption of all households in New York city. This is projected to increase
to roughly 140 billion kilowatt-hours and is responsible for the emission of
nearly 150 million metric tons of carbon dioxide per annum in 2020. These
costs and environmental concerns have prompted service providers to reduce
their energy consumption and their dependence on power generated from
fossil fuels (i.e., Brown energy).

Large companies (e.g., Google?, Microsoft® and Amazon?) are working
towards sustainable data centers by using renewable energy sources (i.e.,
Green energy) and making direct investments in on-site green power genera-
tion. Photovoltaic solar panels that directly convert sunlight into electricity
and wind turbines that capture wind energy and turn it into electricity are
among the most popular on-site power sources used by contemporary data
centers. For example Amazon Web Services (AWS) is building a wind farm
that will be operational by late 2016 and generate 40 percent of its electrical
usage.’

Powering data centers entirely with renewable energy sources, unlike
brown energy, is challenging due to the intermittent and unpredictable avail-
ability of wind and solar energy. For example, photovoltaic (PV) solar energy
is only available during the day time and the amount of power produced
depends on the weather and geographical location of the data center. To
mitigate this variability, besides on-site renewable energy sources, service
providers end up using grid power or brown energy as a backup in their data
centers. However, to minimize brown energy usage, they need to obtain the
highest possible renewable energy utilization.

INatural Resources Defense Council, www.nrdc . org.

Zhttp://www.google.com.au/green/energy/.
Shttp://www.microsoft.com/environment/renewable.aspx/.
‘http://aws.amazon.com/about-aws/sustainable-energy/.
Shttp://www.reuters.com/article/2015/07/14/us-amazon-iberdrola-idUSKCNOPO1PF20150714.

Even though data centers can store power generated by renewable sources
of energy in batteries for later needs, this approach has many problems [2].
For example, 1) batteries lose energy due to internal resistance and self-
discharge, 2) battery-related costs can dominate the cost of power systems,
and lastly 3) batteries use chemicals that are harmful to the environment.
Given aforementioned problems, the best way to take full advantage of the
available green energy is to match the energy demand to supply.

There is a large number of studies illustrating the potential of using “ge-
ographical load balancing” in reducing brown energy usage and accordingly
maximizing renewable energy utilization [3, 4, 5]. Geographical load bal-
ancing (GLB) allows for “follow the renewables” by utilizing resources from
geographically distributed data centers [4]. Additionally, it routes the load
to places with lower electricity prices even if renewable power is fully utilized
or not available. This eventually leads to significant cost savings.

Among different types of applications, web-applications are highly popu-
lar and widely adopted these days. Web applications are ideal for geograph-
ical load balancing as they can quickly adapt to changes in the demand and
their mostly small sized requests can be easily redirected among multiple
data centers. Using multi-tier clustered web server architectures, web ap-
plications are able to efficiently allocate resources within and among data
centers according to time varying demand and renewable energy availability.
In fact, if the Quality of Service (QoS) requirement of web requests in terms
of response time can be satisfied, the load balancing algorithm distributes
requests among targeted data centers so that overall renewable energy usage
is maximized. Please note that web application workload is not deferrable
that means every time a request is received, the response should be generated
immediately afterwards. Therefore, the load balancing technique must make
real-time scheduling of the load which does not delay the current requests.

Figure 1 depicts an architectural overview of multiple sustainable data
centers and a green load balancer. The power infrastructure generates and
delivers power for the I'T equipment and cooling facilities of the data cen-
ter using grid power and local renewable power supplies. Data centers host
resources for the web application and the load balancer is responsible for
sharing requests according to the availability of renewable energy sources on
each site. In this paper we aim to address the interesting and challenging
question posed by this architecture: “Without a priori knowledge of the fu-
ture demand, dynamic and unpredictable nature of renewable energy sources,
and electricity prices, how can the load balancer distribute web application

Figure 1: Architectural overview of sustainable data centers and green load balancing.

requests among multiple data centers so that the overall renewable energy
usage is maximized and the total cost of power consumption is minimized?”

To address this problem, we propose a framework for reactive load bal-
ancing of web application requests among multiple geographically distributed
data centers based on the availability of renewable energy sources on each
site. We develop a prototype, detail its underlying design and algorithms,
describe technical aspects of that, and experiment with it using real life in-
frastructure (i.e., Grid’5000 in France) and workload traces (i.e., real traffic
to English Wikipedia). We also model renewable energy power generation
using real traces of meteorological data for wind and solar radiation in the
location of each data center. Using the prototype, we evaluate the optimiza-
tion techniques and demonstrate that our simple, yet practical, approach
can achieve significant cost savings without advance knowledge of future de-
mands, availability of renewable energy, and electricity prices. The proposed
load balancing algorithm is triggered periodically and collects the current
available renewable power and electricity price at each data center. Then,
based on the present rate of requests at the load balancer, it adjusts the load
distribution among data centers. By using this technique, load distribution
among data centers is adapted to the dynamic and varying renewable power

and electricity prices.

The load balancing technique proposed in this paper is an online algo-
rithm that acts without future knowledge of demand, renewable energy avail-
abilities, and electricity prices. Online algorithms have been previously used
in the literature to tackle the problem of geographical load balancing [6, 5].
However, since we focus on the implementation aspects of the system, we
do not provide the analytical reasoning on the competitive analysis of the
proposed online algorithm.

One of the unique features of our work is that in contrast to the majority
of other studies evaluating their system performance through simulations and
analytical reasoning; our experiments are conducted in a real testbed with
realistic workload traces. Moreover, results of experiments are generated
based on the fine-grained measurements of power consumption using real-
time probes provided by a live monitoring system.

The main contributions of the paper are as follows:

e A reactive load balancing algorithm to distribute a web application load
among different data centers in a region to maximize on-site renewable
energy utilization at each data center and to minimize overall cost. Our
proposed method has a linear order of complexity and does not require
any future knowledge of demands, availability of renewable energy, and
electricity price. This removes the need for any prediction component
and its simplicity is very appealing in practice.

e Design and implementation of a two-layered load balancing prototype
by extending “3-tier architecture” common to web applications.

e Evaluation and validation of the proposed load balancing algorithm
using the developed system prototype in a real testbed with realistic
workload traces. Results of experiments are generated based on the
real-time measurements of actual power consumption. Meteorological
data in the location of each data center used to model renewable power
generation.

The rest of the paper is organized as follows: Section 2.1 motivates
our work. We describe the system architecture in Section 2.2. Section 2.3
presents a detailed discussion on the design and implementation of the sys-
tem. Section 3 proposes our load balancing and auto-scaling algorithms.
The performance evaluation of the system is presented in Section 4. First,

we describe the testbed setup, the benchmark algorithm, traces of workload,
renewable power and electricity prices in Section 4.1. Then, benchmark poli-
cies and the experimental results are discussed in Sections 4.2 and 4.3, re-
spectively. Section 5 discusses related work. Finally, our conclusions are
presented in Section 6.

2. Load balancing in sustainable data centers

2.1. Motivation and background

Internet-scale distributed systems such as web applications use resources
provided by geographically dispersed data centers each with hundreds of
thousands of physical nodes. The enormous and growing energy demands
of such data centers have motivated constructing sustainable data centers
for both economic and environmental reasons. Renewable sources of energy
(e.g, wind and solar) have the potential to play an important role in such
sustainable data centers. However, the intermittent and variable nature of
renewable energy sources, caused by being heavily dependent on weather
conditions, prevents them from being used as primary power supplies for data
centers. Essentially, a data center must be operational even when renewable
energy is not available. This is possible by feeding the data center with brown
energy from the grid in case the local renewable energy is insufficient. Data
centers often contract with power companies to pay variable brown electricity
prices for their excess usage provided by the utility grid.

Web application providers using resources from sustainable data centers
(i.e., those equipped with on-site renewable energy facilities in our definition)
in a specific region can distribute load by following the renewable energy
supply in each site to save cost and reduce carbon emissions. That is, more
requests must be redirected to the places with higher availability of renewable
energy. The availability of the renewable electricity at each data center might
vary due to reasons such as geographical location, weather conditions, work-
load, and capacity of power generators. Eventually, if there is not enough
available renewable power from all data centers to handle the entire load,
requests must be routed to places with lower electricity price. Indeed, with
widespread adoption of smart grid technologies, spatial and temporal differ-
ences in electricity prices, even in a small region, provide an opportunity for
the load redirection to save cost.

In order to make this possible, we design and implement a framework for
green load balancing of web requests among sustainable data centers host-

6

ing the web application and dispersed throughout a region. In this system,
it is assumed that the “operational cost” of on-site power generated from
renewable sources of energy at each data center is zero. This is a valid as-
sumption as renewable power generation needs one-time installation and very
low maintenance cost during the lifespan of the renewable power generators.
Decision making regarding the investment on on-site renewable power gen-
eration based on its “capital cost” and “return on investment” is not in the
scope of this work. Interested readers are referred to [7] for feasibility of pow-
ering internet-scale systems using renewable energy and optimal portfolio of
solar and wind energy mix.

Moreover, delay related changes due to geographical routing are not a
concern in this work as we only consider data centers located within a cer-
tain region. In our terminology, a region is a geographic area (e.g., Europe,
US East, Central Asia) with multiple and isolated data centers connected
through low latency links. In the performance evaluation section, we show
that for a testbed of the same characteristics, response time remains be-
low the acceptable delay requirements of the studied web application (i.e.,
Wikipedia)® and will not significantly be affected due to geographical load
balancing within the region.

2.2. System Architecture

Our approach to green load balancing of web applications extends multi-
tier clustered web server architecture by adding an extra layer of load balanc-
ing responsible for sharing load at the data-center level as shown in Figure 2.
A standard multi-tier web application often consists of three logical layers [8]:

1. Presentation Layer — represents the interface displayed to the end-user,
e.g., a web page viewed on a web browser.

2. Business/Domain Layer — implements the core application logic, e.g.,
core web application deployed on web servers.

3. Data Layer — handles access to the persistent storage, e.g., a database
server.

This layered architecture allows for software components of each layer to be
deployed within single/multiple separate machines and easily scale out based
on the load. For example, the number of web servers can increase or decrease

6Web-based encyclopedia project supported by the Wikimedia Foundation.

dynamically in response to the demand. Web servers of the business/domain
layer are often deployed behind a load balancer, which redirects the incoming
requests among them. In our architecture, we introduce two level of load
balancing:

1. Local Load Balancing — redirects requests between web servers within a
data center, and

2. Global Load Balancing — redirects requests among local load balancers,
each associated with a data center.

In this paper, we focus on load sharing at the global load balancer (Global-
LB). Global-LB is the main entry point of the system and all incoming re-
quests at this point are distributed among geographically dispersed data
centers based on the proposed policy.

In each data center, there is an auto-scaler that dynamically and adap-
tively adds and removes web servers behind the local load balancer in re-
sponse to the dynamic workload. Here, we only focus on auto-scaling of
the application layer which is a common practice in the real world. Auto-
scaling can be done based on statistics gathered by the monitors responsible
for fetching corresponding system information such as resource utilization at
web server nodes, request rates, etc. According to the obtained information,
when it is necessary, the auto-scaler then makes scaling decisions based on
predefined strategies and policies. In Section 2.3.2, we detail our proposed
auto-scaling policy.

At the lowest level of the system architecture, Database server(s) provide
access to the persistent storage for the web servers. Web servers in the busi-
ness/domain layer query the database servers of the data layer for required
information (e.g., web page content). The data layer can be composed of both
transactional relational databases, caches and novel approaches like NoSQL
and NewSQL databases.

2.3. Design and Implementation

Apart from components of multi-tier architecture for web applications,
the key components of the proposed system are global load balancer and
autoscaler.

2.3.1. Global load balancer (Global-LB)

The function of Global-LB is to redirect incoming web requests to an
appropriate data center site so that the overall renewable energy utilization

8

© O O O

;I Global
~ Load Balancer

Local Autoscaler
1~ Load balancer

Load Balancer

‘ Local

‘ r:%:: Autoscaler

'
'

| |
i | [web server Web Server WebServer|| | ... | Web Server . I Web Server
| T T * T | T T
H

= Tt D A i S

| |
I Database Server I ; ‘\ I Database Server I

Figure 2: Overall system architecture and related components.

is maximized. To achieve this goal, we use HAProxy’ load balancer that
distributes requests across local load balancers. The “weighted round robin”
is one of the main load balancing algorithms used by HAProxy to determine
which server, in the backend, is selected for the next incoming request. A
weight parameter can be assigned to each server in the backend to manipulate
how frequently the server is selected for the request routing, compared to
other servers.

We designed and developed a controller to be run besides HAProxy, as
shown in Figure 3. The role of the controller, which is a Java program de-
ployable on the same or separate host as HAProxy, is to assign weights to
each server on a regular basis according to the current status of the system.
In order to do so, the controller has a decision making module calculating
weights based on the load balancing policies and information collected by
monitoring modules. Monitoring modules are responsible for computing the
amount of power consumed on each site and the total number of requests
redirected to the site in a certain time window. To obtain the number of
requests in a time period, the monitoring module queries the statistics mea-
sured by HAProxy. To compute the power consumption, the corresponding
monitoring module communicates with the power monitoring APIs provided

"HAProxy - The Reliable, High Performance TCP/HTTP Load Balancer, http://
www.haproxy.org/.

Set weights Decision Making
Module
|
o Fetch numbers ! !
i HAProxy Power
requests for each site R
HAProxy "] Monitoring Monitoring
Controller
Fetch power
Global Load Balancer consumption on
each site

Figure 3: Global Load Balancer.

on each data center site. In our prototype, the monitoring module directly
fetches the power consumption from every node using probes installed on the
node. Having collected the required information, the decision making mod-
ule based on the predefined load balancing policy, which will be discussed
shortly, sets the weight values relative to each site for HAProxy. The load
balancing policy used in our system is presented in Section 3.1.

2.3.2. Auto-scaler

Each auto-scaler is packaged in a single JAR file and deployed on the
same or a separate host as the local load balancer. The main function of an
auto-scaler is to horizontally scale out web servers on demand (to allocate
or deallocate web server machines) in the business/domain layer of the web
application.

There is a substantial amount of work on designing auto-scaling solu-
tions for multi-tier applications, for example [9, 10, 11]. Among different
approaches, threshold-based auto-scaling methods that work based on per-
formance metrics such as CPU and RAM utilization are among the most
widely adopted techniques, e.g., AWS Auto-Scaling Service.® More resources
are provisioned whenever an upper threshold is exceeded and resources are
released whenever a lower threshold is reached. The main scope of this work
is not to propose a new methodology of auto-scaling for multi-tier web ap-
plications. Any form of auto-scaling method can be plugged into the system

8 Auto-Scaling - Amazon Web Services, http://aws.amazon.com/autoscaling/.

10

without the necessity to modify other components. Nevertheless, in our pro-
totype, we need an efficient auto-scaling mechanism to elastically scale out
the web server machines in the virtual cluster once it is required.

Since in our evaluation we use homogeneous server farm? for web servers
in each data center, we employ a simple yet effective auto-scaling method
based on profiling data collected from web server machines in each data
center. Accordingly, we set an upper threshold for the request rate at or
below which web server machines of the specific type can provide responses in
a timely manner. Thus, the auto-scaler allocates more web server machines
whenever request rate goes higher than the threshold. In section 3.2, we
present a detailed discussion on the auto-scaling algorithm.

3. Load Balancing and Auto-Scaling Policies

In this section, first, we detail our proposed load balancing algorithm used
in Global-LLB and then the auto-scaling algorithm employed to scale out web
servers in each data centers is presented.

3.1. Green Load Balancing Policy

Algorithm 1 shows the pseudo code of the Green Load Balancing (GreenL.B)
policy used by the Global-LLB component of the proposed system. Variable R
is defined to maintain the overall rate of requests that can be handled by the
power generated from renewable energy sources in all data centers. Lines 2-9
gather the required information using the monitoring modules and compute
request rates at which a data center could accommodate requests only using
renewable power within the time window (e.g., for the last 10 minutes). ¢
and t keep track of the energy consumption and total number of requests
served by the data center, respectively (Lines 3 and 4). a is a value for the
total amount of renewable power currently available in the site (Line 5). By
dividing value of ¢ to t, we compute the amount energy w consumed at the
specific data center to serve each request (Line 6). Accordingly, the max-
imum rate of requests r4 specifying the rate at which this data center can
provide service only using renewable power (Line 7) is computed. The value
of R is updated based on the calculated rate r4 iteratively.

When the computation of r4 is done for each data center, the request rate
at which global load balancer received requests in the recent time window, ~,

9A server farm made up of machines having the same characteristics.

11

Algorithm 1 Green Load Balancing (Green.B) Policy

1: R+ 0

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:

for all data centers d in the list do
c — Fetch the data center’s energy consumption in
Watt-hour within the time window
t < Fetch the number of requests redirected to the site
within the same time window
a < Fetch currently available renewable power at the site
in Watt
w < Compute Watt-hour consumption per request (c-+t)
rq < Compute the request rate (#reqs/hour) data center d
can accommodate using renewables (a <+ w)
R+ R+ Td
end for
v <— Fetch request rate (#reqs/hour) at Global-LB
if v < R then
for all data centers d in the list do
set weight as 74+ R
end for
else
Find the data center d with the cheapest price of brown
energy per request.
L+~
for all data centers d in the list except d' do
set weight as rq+ 7
L+ L-—r
end for
Set the weight for d as L+~
end if
Update HAProxy weights accordingly

12

is fetched from HAProxy (Line 10). If v < R, it means that enough renew-
able energy is available to handle all incoming requests at the current rate
(Line 11) and the weight for each data center is computed proportionally to
the availability of renewable energy on each site (Line 13). Otherwise, if there
is not enough renewable energy available to handle all requests at this rate
(Line 15), each data center will receive requests based on the maximum rate
of requests they can serve with renewable energy sources (Line 19) and the
one with the lowest price of brown energy consumption per request accom-
modates the remaining parts of requests (Line 22). Finally, at Line 24, the
HAProxy weight parameters are updated according to the computed values.

Please note that our policy never deallocates all web server machines in
a specific data center and there is always at least one web server running on
each data center. Therefore, if the availability of renewable energy sources
at a certain data center is lower than the energy required for running even
one web server machine, we set the weight in a way that the data center
receives the minimum rate enough for one web server. Details related to this
calculation are not shown in Algorithm 1 for the sake of preserving clarity.
In addition, we assumed that there are sufficient resources available in each
data center to accommodate the whole workload. Therefore, we did not
consider the case that the data center with the cheapest brown energy price
cannot accommodate the remaining part of the requests. If this is the case,
a cap/limit on the maximum rate of requests each data center can handle
must be considered by the algorithm.

Algorithm 1 runs a loop on all data centers to fetch required information
to calculate values of R and r4. Then according to the condition in Line 11
makes another loop to set weight values for each data center. Therefore, the
asymptotic time complexity of algorithm is O(n), where n is the number of
data centers.

3.2. Auto-Scaling Policy

Algorithm 2 shows the details of the auto-scaling policy used in our sys-
tem. The auto-scaling policy proposed in this paper is a reactive auto-scaling
working based on threshold-based rules. By conducting profiling study, we
set an upper threshold below which the web server is able to provide re-
sponses within an acceptable time frame. The ratio of arrival request rate
at local load balancer to the threshold value gives us the total number of
required web servers.

13

Note that, Algorithm 2 is an algorithm without a loop or a recursion and
incurs the time complexity of O(1). The auto-scaler based on the profiling
information sets the request rate at or below which a web server running on a
specific machine type can efficiently generate responses for the web requests
(Line 1). Then, in Lines 24, the total number of required web servers is
computed according to the average request rate in the last time window
(e.g., last 3 minutes). The number of required web servers is computed by
diving the average arrival rate of web requests at the local load balancer to
the threshold value and taking the ceiling of the result (Line 4). If total
number of required web server machines is higher than the number of the
currently running web servers, it allocates more web server machines (Line 7);
otherwise, if the number is lower, it deallocates excess machines (Line 9).
Finally, in Line 13, the local load balancer is informed by the updated list
of web servers. Please note that the local load balancing between the web
server machines is done in an evenly weighted round robin fashion as the
server farm is homogeneous.

Algorithm 2 Auto-scaling Policy

1: ¢ < Set the threshold (i.e., appropriate rate for a web
server) based on the profiling data

2: v < Fetch the request rate in the recent time window from
the local HAProxy load balancer

3: 0 <~ Fetch the number of currently ON web server machines

4:m < [r +t] Compute the total number of web server machines
required

5 M m—o

6: if n > 0 then

7 Add n more web servers

8: else if n < 0 then

9: Remove n web servers

10: else

11: No scaling is required

12: end if

13: Inform local load balancer with the new list of web servers

14

10G dedicated
= == == == 1GBL2VPN

Figure 4: Grid’5000 testbed.

4. Performance Evaluation

To evaluate our system, we developed a prototype and performed exper-
imental studies in a real testbed (Grid’5000) using real traces of requests for
English Wikipedia pages. In the following, we explain details of the testbed,
workload, renewable power traces, and electricity prices. Then, we present
results of experiments conducted using this setup. Our aim is to understand
the cost and energy consumption performance of the proposed system in
realistic settings.

4.1. Ezxperimental Setup

4.1.1. Testbed

As testbed, we used Grid’5000 [12], a French experimental grid plat-
form.'® Grid’5000 comprises sites geographically distributed across France.
We consider a group of 3 sites equipped with power monitoring APIs [13]
in the following locations: Lyon, Rennes and Reims shown in Figure 4. We
set up the experimental testbed by preparing 3 deployable environments as
follows:

0The Grid 5000 project, http://www.grid5000.org/.

15

Table 1: The characteristics of machines hosting web servers in different sites.

’ Site \ CPU \ Number of cores \ Memory ‘
Lyon AMD Opteron 250 2.4GHz 2 2GB
Reims | AMD Opteron 6164 HE 1.7GHz 2 48GB

Rennes | AMD Opteron 6164 HE 1.7GHz 2 48GB

e Database (DB): a mysql database server loaded with the English Wikipedia
dataset as of Jan 3rd, 2008 containing roughly 2 million wiki pages and
size of 3GB.

o Web Server (WS): an Apache Web Server (version 2.4.10) with the
installed Mediawiki application.

e Local Load Balancer (Local-LB): HAProxy (version 1.6) load balancer
along with the auto-scaler Java program.

All deployable environments run on the Debian Linux Wheezy operating
system. The characteristics of machines used in each site for hosting web
servers are summarized in Table 1. To switch on/off a deployed web server,
we used Grid’5000 APIs for accessing the “Wake-on-LAN” interfaces. By
switching off, we set the physical machine to the “hard” power off mode (i.e.,
physical shut down).

To replay traces of requests by Wikipedia users, we used wikibench bench-
mark tool [14].1! Wikibench is a web hosting benchmark allowing the stress-
test of systems designed to host web applications. Using wikijector software
module of wikibench, one can generate traffic by replaying traces of user re-
quests actually made to Wikipedia. For our experimental study, we deploy
wikijector on a machine in the Nancy site to mimic Wikipedia users send-
ing requests to the Global-LB. Global-LB is deployed on a separate host in
the Nancy site besides the controller Java program. The architecture of the
prototype system deployed on the Grid’5000 testbed is shown in Figure 5.

4.1.2. Workload
We used real traces of requests to the web servers from the Wikimedia
Foundation as workload. Our workload contains 5% of all user requests

HWikibench, the realistic web hosting benchmark, http://www.wikibench.eu/.

16

Wikijector

Trace file

Wikipedia

JAAN

Reauests

HAProxy

Controller

Golbal-LB

Auto-Scaler \
(o) 10
Reims
)
/! \

Auto-Scaler

HAProxy

Local-LB

Nancy /

-. SN\
~ AN
//

plwsly
/

'S
'S
ws
‘/ Rennes

Figure 5: The architecture of the prototype system.

issued to English Wikipedia resources during the period of 19*" to 21% of
September 2007.'2 Figure 6 depicts the number of requests per second for
the same period.

4.1.8. Awvailability of Renewable Energy

To capture the availability of solar energy in the location of each data
center, we use data traces by SoDa Service'® with 30 minutes granularity
between 19" and 21%¢ of Sept 2007. The Global Horizontal Irradiance (GHI)

2http://www.wikibench.eu/wiki/2007-09/

Lhttp://www.soda-is.com, The SoDa Service is a broker to a list of services and web-
services related to Solar Radiation proposed by several providers in Europe and abroad.
The SoDa Service is provided by two mirror sites: one hosted in MINES ParisTech, Sophia
Antipolis France, and the other by Transvalor S.A., Mougins.

17

Number of Requests (req/s)

0
0 12 2 36 48
Time (hour)

Figure 6: The English Wikipedia workload
for 19*" and 20" of September 2007.

!

)

- 8 ¥ 88888 ¢& 8
¥ 8 8 8§ B B B

Time (hour) Time (hour)

"
)

(a) Solar (b) Wind (¢) Normalized total

Figure 7: Renewable Power Generation for tow days.

in the location of each data center is used to calculate the output for solar
photovoltaics (PV) power. We assume that each data center uses power
generated by the PV panels of total 4000m? area with tilt angle of 45° degree
and PV cell efficiency of 30% (Roughly the highest efficiency reported so
far [15]). We calculate the PV power module output on the tilt surface
based on the model in [16].

We use meteorological data collected from Weather Underground!# traces
to model wind power for the same dates. We presume each data center
uses a GE 1.5MW wind turbine to generate wind power. To estimate the
average wind power production, the model proposed by Fripp and Wiser [17]
is employed where the wind speed, the air temperature, and the air pressure
measurements in the location of each site are fed into the model.

The summation of power generated from these two sources for every 30
minutes is computed as available renewable power for every site. Figures 7
(a), (b) and (c¢) show respectively the solar, wind, and normalized total power

YUwww.wunderground.com /history/

18

Electricity Price per KWh (€)
N
&

00 60 120 180 240 300 360 20 480
Time (hour)

Figure 8: Electricity prices for two days.

generated from renewable sources on each site for the 2-day period. In our
investigation, we scale the normalized value of renewable power availability
linearly in a way that the average renewable power generation is roughly
enough to serve the average workload. Accordingly, every normalized power
value is multiplied by 2128.5 computed in this way.

4.1.4. Electricity Prices

In France, the utility grid power is mostly generated by Electricité de
France (EDF), French utility company, and is primarily produced from nu-
clear power sources. Moreover, EDF offers wide range of tariffs which are
consistent all over France. In our experiment, we assume on-peak/off-peak
scheme, the most common type of variable energy pricing in the market. The
electricity prices charged by EDF for on-peak (between 8am and 8pm) and
off-peak are set to €0.1636/kWh and €0.1150/kWh, respectively. In order
to incorporate price variability and effect of brown energy into our experi-
ment, we increased the electricity price for each site by a factor based on the
closeness of the site to non-renewable plants. Using geographical location of
EDF non-renewable plants in France [18], we increased the electricity prices
for Reims, Rennes, and Lyon, respectively, by 20%,10%, and 0%, as it is
shown in the Figure 8.

4.2. Benchmark Algorithms

To evaluate the performance of the proposed GreenL.B policy, we consider
two benchmark algorithms.

4.2.1. Round Robin (RR)
The RR policy sets equal weights for Global-LB which results in the
even distribution of load among all sites. Since Wikipedia workload and the

19

renewable power generated on every site exhibit a similar diurnal pattern,
RR policy that evenly distributes requests among data centers is a competent
benchmark policy to evaluate the performance of GreenLLB.

4.2.2. Capping

Le et al. [19] proposed a policy for request distribution across data centers
to minimize the overall energy cost. Similar to our method, their optimization
method seeks to define the fraction of requests that should be forwarded
to different data centers to minimize cost for an Internet service provider.
Therefore, we decided to compare the performance of our proposed GreenLB
policy with their method which we refer to as “Capping” policy from now
on.

Since, their method is different from ours in some aspects and they con-
sider brown energy caps for each data center (not considered in this paper),
we modified their method in several ways to adapt it to our settings. First,
we set infinite brown energy caps for data centers to let their policy solve
the optimization problem in the absence of brown energy caps. We also con-
sidered zero cost for using green energy because in our settings data centers
use free of charge on-site renewable power. Finally, the constraints related to
fraction of requests are updated in a way that the minimum percentage of re-
quests forwarded to each center is enough to utilize available renewable power
on that site. If there is abundant renewable power (i.e., the renewable power
generated by all data centers collectively is more than the power required to
handle the entire workload), similar to our policy, we break down the load
proportionally to the available renewable power for each data center as no
feasible solution can be constructed by their optimization technique. Accord-
ing to the above modifications and assuming that the mixture of green and
brown energy for the next time slot is known by the load balancer, their opti-
mization method converts into an LP (Linear problem) which can be solved
with an LP solver. Following their method, a solution for the optimization
problem is periodically computed on a regular basis of once per hour. Their
Auto-Regressive Integrated Moving Average (ARIMA) modeling is also used
to predict the request rate for the next hour. Figure 9 shows the actual and
ARIMA-predicted request rates for the two-day Wikipedia workload used in
our experiments.

20

Number of Requests (reqs/s)

250
225
200
175
1504
0 12 24

Time (hour,

predicted
e Actual
36 48
)

Figure 9: Hourly actual and predicated request rate used by the Capping policy.

4.3. Experimental Results and Analysis

This section presents our experimental results. We run two-day experi-
ments on the pre-configured testbed using the explained traces of the work-
load, renewable power and electricity prices for GreenLLB, Capping, and RR
policies. The auto-scaling algorithm on Local-LB are triggered every 2 min-
utes for all policies. The value is set based on a preliminary pilot study
conducted before the main experiments. The load balancing algorithm on
Global-LB is executed every 3 minutes for the proposed GreebLLB policy and
every 60 minutes for the Capping policy. We measure the power consumption
via the servers’ built-in power monitoring APIs with a granularity of 30 sec-
onds. Please note that we only collect and report the power consumption for
the web servers, since the power consumed by the load balancer and database
server machines on each site are largely constant during the experiments.

Figure 10 shows the power consumption and the brown energy usage for
each site when the GreenLB algorithm is used to distribute workload among
sites. The GreenLLB algorithm successfully follows the available renewable
energy on each site as it can be clearly seen in Reims and Rennes data
centers. The pattern is different for Lyon because whenever there is not
enough renewable energy available, the algorithm redirects more requests to
the Lyon data center which has the cheapest price of electricity per request.

Similarly, Figures 11 and 12 illustrate that the green and brown power
consumptions when Capping and RR algorithms are employed respectively.
As shown in Figure 11, Capping policy demonstrates similar behavior to
GreenL.B, even though future knowledge regarding requests rate and avail-
ability of renewable energy for the next hour are available to this policy.
This can be explained by the fact that the Wikipedia workload consists of

21

i
Time (hour)

(a) Lyon

P —

(b) Reims

T —

#
“Time (hour)

(c¢) Rennes

Figure 10: The power con-
sumption for different sites
using Green Load Balanc-
ing (GreenLB) algorithm.
The shaded area shows
brown energy usage.

i h
ia g v
il f ! f
" v
(a) Lyon
gl”
b 'LF“T‘LL
B W‘L:)
(b) Reims

é’m fan LA At
(I e

E]
Time (hour)

(¢) Rennes

Figure 11: The power con-
sumption for different sites
using Capping algorithm.
The shaded area shows
brown energy usage.

22

it Fenevatie
—— FowerGrampton

(a) Lyon
'g 1500-
-
S A A GO i
uo " T\ﬂ’?):’m) * *
(b) Reims
g 1500-
o

£
Time (hour)

(c) Rennes

Figure 12: The power con-
sumption for different sites
using Round Robin (RR)
algorithm. The shaded
area shows brown energy
usage.

ber of Web Serve

Number of Web Servers

-
5

.
:
g s

.
i ijl
:

.

.

W B3
“Time (hour) Time (hour)

(a) Lyon (a) Lyon (a) Lyon

Number of Web Servers

-
2 s
.

% W
Time (hour) Time (hour) Time (hour)

(b) Reims (b) Reims (b) Reims

Number of Web Servers
umber of Web Serv

Number of Web Servers
ber of Web Serve
Number of Web Servers

o
g s
.
) JLHJHH—H_IIILII 2
H

“Time (hour) Time (hour)

Time (hour)

(c) Rennes (c) Rennes (¢) Rennes

Figure 13: The nurr.lber of Figure 14: The nunllber of Figure 15: The number of
Web S.ervers for different Web Se-rvers for.dlfferent Web Servers for different
31te§ using G-reen Load Bal- S}tes using Capping algo- sites using Round Robin
ancing algorithm. rithm. (RR) algorithm.

23

many small sized requests that can be reactively routed among multiple data
centers and in-advance proactive decision making is deemed unnecessary.

A comparison between Figures 10 and 12 clearly illustrates that sub-
stantially more brown energy usage happens in the Reims and Rennes data
centers when the RR algorithm is used while less brown energy usage occurs
in the Lyon data center. Figure 13,14, and 15 show the number of ON web
servers for sites for GreenLLB, Capping and RR policies, respectively.

Table 2 summarizes the results shown in the figures. The aggregated
total and brown power consumption for all sites shows that even though
all algorithms cause similar power consumptions, GreenLB uses 17% less
brown energy and saves cost by almost 22% in comparison to RR. The re-
sults demonstrate that GreenLB can significantly increase green energy uti-
lization and decrease electricity cost by 8% and 22% compared to Capping
and RR policies, respectively, even when sites have similar amount of renew-
able power production and very competitive price of electricity. The total
amount of brown power consumed by GreenLLB policy is 2.63 kWh, which is
7% and 17% less than Capping and RR policies, respectively. It is expected
that the difference in renewable power utilization and cost saving increases
substantially whenever there exists more gaps between the renewable power
availability and electricity prices of different sites.

Capping and GreenLLB share major similar characteristics and provide
competitive solutions for the geographical load balancing problem tackled in
this paper. However, the Capping policy works based on linear optimization
which is considerably less efficient than GreenLB in terms of time and space
complexity. Moreover, errors imposed by future load predication and hourly
based decisions performed by Capping policy result in 7% more cost and 8%
more brown power usage compared to our proposed GreenLLB algorithm.

In order to study the impact of our proposed load balancing algorithm
on the response time, we measured the real-time response time for all the
Wikipedia requests submitted to the system. Figure 16 shows the CDF of
the response time observed by all load balancing algorithms. The graph
demonstrates that there is no significant difference in the response time of
the algorithms and majority of requests are responded within the acceptable
range of hundreds of milliseconds, while RR shows marginally more stable
response time. More than 90% of request are responded in about 350ms and
less for the GreenLLB algorithm. There are few peaks of high response time
upto few seconds for all policies happening by reasons such as Java garbage
collection for Wikijector module and PHP garbage collections in Apache web

24

Table 2: Summary of Results.

Site Metric RR | Capping| GreenLB
Power Consumption (kWh) | 36.2 42.9 41.2
Lyon | Brown Consumption (kWh) | 13.3 19.0 16.9
Cost (€) 1.71 2.31 2.01
Power Consumption (kWh) | 32.5 32.5 35.4
Reims | Brown Consumption (kWh) 3.1 1.1 1.9
Cost (€) 0.42 0.15 0.27
Power Consumption (kWh) | 36.4 29.7 28.3
Rennes | Brown Consumption (kWh) 9.3 2.9 2.6
Cost(€) 1.23 0.39 0.35
Power Consumption (kWh) | 105 105 105
Total | Brown Consumption (kWh) | 25.7 23.0 21.4
Cost(€) 3.36 2.85 2.63

25

0.8 /
J f
0.6 g

0.4 L

Probability (Requests)

/

/ GreenlB

l — — — Capping
—————— RR

0.2

0.0 Lo
0 200 400 600 800 1000 1200 1400

Response Time (ms)
Figure 16: CDF of average response time per second for English Wikipeida requests using

different algorithms.

servers.
The comprehensive analysis of the experimental results also demonstrates

that the impact of the delay associated with switching on and off web servers
on the response time of requests is negligible. The main reason that switching
on delay is not an issue is that we chose the threshold for scaling out web
servers in the auto-scaler algorithm sufficiently below the maximum capacity
of the each web server. Therefore, each web server machine has some spare
capacity to handle portion of extra load before it becomes fully saturated and
affects the response time. This way, our auto-scaler algorithm includes an
acceptable level of over-provisioning to avoid Quality of Service degradation
due to switching on (booting) time of web server machines. That is, whenever
the incoming request rate at the local load balancer increases, the auto-scaler
(at least in case of Wikipedia workload) has enough time to scale out and
to add new fully operational web servers. Switching off web server machines
also does not affect the response time, as in the first step of the scale-in
process, the auto scaler removes the target machine from the list of available
machines in the local load balancer. Therefore, this machine will not receive
additional requests. Then a signal for switching off is dispatched and the
machine only switches off after all remaining requests in the web server queue

are responded.

26

5. Related Work

Over the last decade, power management techniques to minimize data
centers’ costs and environmental impacts have gained considerable attention
by both academia and industry. Large data centers such as those used by big
companies like Google and Amazon can host thousands of physical servers
and require up to tens of megawatts to power them [20]. As result, service
providers are under huge pressure to reduce their energy consumption and
its associated costs. This has pushed them towards using more sustainable
and green data centers. In a recent study, Shuja et al [21] have provided
a survey of enabling techniques and technologies for sustainable and green
data centers.

Most of the early research studies on energy efficiency of data centers focus
on making green data centers using optimization techniques within a single
data center; techniques such as CPU dynamic voltage and frequency scaling
(DVEFS) [22], virtualization and VM consolidation [23, 24], and workload
scheduling [25]. An extensive survey and taxonomy of these can be found
in [26]. Similarly, Shuja et al. [27] conducted a survey of techniques and
architectures for designing an energy-efficient data center.

5.1. Leveraging green enerqy

There is a number of studies focused on reducing brown energy or power
consumption, monetary costs, and environmental impact using renewable
sources of energy for different types of applications, for example, batch pro-
cessing [28, 29, 30|, and interactive processing [31]. Goiri et al. [28] present
Parasol, a green data center prototype. They define a scheduler for planning
the workload execution and for selecting the energy sources: solar panels,
batteries or grid. The scheduler makes decisions based on workload and en-
ergy predictions, battery level, DC characteristics and grid electricity prices.
Liu et al. [29] present an approach to model the energy flows in a data center
in order to optimize its operation. They predict renewable energy and IT
demand to schedule I'T workload and allocates I'T resources within a data
center according to time varying power supply and cooling efficiency. Au-
thors in [30] propose GreenSlot a parallel batch job scheduler for a data
center powered by a photovoltaic solar array and the utility grid. Stewart
and Shen [31] also try to maximize green energy use in data center for inter-
active Internet services. All these studies focus on load or demand shifting

27

to maximize green energy utilization within one data center, while we focus
on multiple data center load redirection.

5.2. Geographical load balancing (GLB)

A large body of recent literature focuses on reducing energy costs tar-
geting geographically distributed data centers. This group of work mainly
devises techniques for workload distribution across geo-distributed data cen-
ters in order to achieve performance objectives such as minimizing cost, max-
imizing renewable energy utilization, and minimizing emission. Rahman et
al. [32] present a comprehensive survey on data center power management
using geographic load balancing.

Among different approaches of geographical load balancing, “following
the renewables” has gained considerable attentions. This approach requires
that dynamic load balancing mechanism be aware of the availability of re-
newable energy at data centers [21]. One of the early studies on GLB is
done by Liu et al. [4]. Using GLB, they propose algorithms to maximize re-
newable energy utilization and show how dynamic electricity price can affect
brown energy usage. They use trace-based numerical simulations to evaluate
their algorithms. An extension to this work has been done by Lin et al. [3],
where they propose online algorithms to exploit the potential of geographical
diversity of internet-scale services on renewable energy utilization. As part
of their research, they show the optimal portfolio of solar and wind energy
sources in GLB. Similarly, He et al. [33] considered the sustainability of data
centers by proposing socially-responsible load scheduling for data centers
where they consider emission cost as the social cost. Chen et al. [34] pro-
posed a scheduling algorithm that considers the workload fluctuation, jobs’
deadline, variable green energy supply, outside temperature, and data center
cooling dynamics. In a recent comprehensive study, Paul et al. [35] proposed
a holistic framework for dynamic load distribution using online algorithms
techniques. To minimize cost, they exploit the spatial variation in electricity
price and renewable energy generation for a cloud service provider having a
large number of data centers collocated with renewable energy sources. Their
approach not only maximizes green energy utilization, but also minimizes the
number of server switching. They have conducted extensive simulations with
real data traces to evaluate their system. Berral et al. [36] go one step fur-
ther by proposing a framework that offers suitable locations of data centers
to a provider seeking to create a network of sustainable data centers for a
follow-the-renewables HPC cloud service.

28

All these studies consider data centers with on-site free of charge power
generations from renewable energy sources. Similar to these, we consider
GLB to reduce energy cost and to maximize renewable energy utilization.
However, we mainly focus on practical considerations and we evaluate our
proposed system in a real environment using realistic traces of workload,
renewable energy and electricity prices.

5.3. Power capping

Another set of research efforts on dynamic load balancing assume that
data center must pay for the power drawn from the off-site renewable en-
ergy sources. Le et al. [37] considered load distribution across data cen-
ter sites by including limiting the energy usage from non-renewable sources.
Gao et al. [38] propose a framework, which is compared to the method by
Le et al. [37], for request-routing and traffic engineering considering changes
in workload and carbon footprint. They attempt to balance the three-way
trade-off between access latency, carbon footprint, and electricity costs. A
recent topic of interest that explores capping the brown energy consumption
has been studied by several studies such as [19, 39]. Policies used in this
category propose techniques to abide by carbon caps on brown energy con-
sumption. Le et al. [19] propose a software framework to distribute requests
among different data centers while supporting the capping brown energy
consumption. The goal is to abide by the carbon caps for each data cen-
ter without excessively increasing costs or degrading performance. Similarly,
Abbasi et al. [39], propose online algorithms to tackle the same problem.
They remove the need for long-term future prediction via exploiting their
proposed online algorithms. All these research efforts assume that data cen-
ters have to pay for renewable energy from off-site utility power. Moreover,
electricity prices for power generated from off-site renewable sources might
be higher than brown power. However, we assume data centers are equipped
with on-site renewable power facilities and power generated in this way is
free of charge.

5.4. Online application load balancing

Efficient Use of geographically spread resources for online interactive ap-
plication such as web applications has been explored by several authors.
Goudarzi and Pedram [40] investigate the load balancing problem for online
service applications using a cloud system comprised of geographically dis-
persed data centers. Offline and online algorithms are proposed to determine

29

the application placement and migration based on renewable energy genera-
tion capacities at different data centers in the cloud system. Similar to our
work, Kanizo et al. [41] use Wikimedia access logs to test their threshold-
based load sharing techniques. However, they did not consider renewable
energy power generation in their work. Using the same workload, Zhang
et al. [42] proposed GreenWare, a framework to maximize renewable energy
utilization of Geo-distributed data centers. Contrary to our work, they use
simulation for evaluation purposes and assume that renewable energy is more
expensive than brown energy.

6. Conclusions and Future Work

We proposed a cost and energy efficient load balancing algorithm to dis-
tribute web applications requests among multiple data centers geographically
distributed in a region. A prototype was implemented and experimental
studies in a real testbed are performed using it. A group of 3 data centers
from Grid5000 testbed scattered in France and equipped with power moni-
toring APIs were selected. Meteorological data in the location of each data
center used to model solar and wind power generation. Real traces of web
requests for English Wikipedia pages were replayed to generate the work-
load. Our proposed green load balancing algorithm is employed to distribute
load among data centers based on the availability of renewable energy and
prices of grid brown energy for each site. Finally, total power consumption,
brown power usage, and cost of electricity are measured and compared to two
benchmark algorithms. Results showed that, even in case similar amount of
renewable power production in sites and very competitive price of electricity,
our proposed policy is able to reduce the cost by 22% and 8% and brown
energy by 17% and 7% in comparison to round robin and policy proposed
in [19], respectively. We also demonstrated that the average response time
of requests is not affected by our proposed load balancing algorithm.

Studies like the one presented in this article can be used to measure
the required amount of energy to handle certain workload. Accordingly,
this provides insights regarding the renewable energy facilities required by
each data center to handle the load. Future research needs to be done to
incorporate our proposed method with support for investment decisions on
establishing renewable power generators in a real-world system.

In our proposed system, we only considered stateless web applications
in which requests can be responded individually regardless of which user is-

30

sued them. In future, we focus on the design and implementation of “Sticky
load balancing” policies in which after a session between a client and an ap-
plication server is established, all subsequent requests from this session are
redirected to the same server. Moreover, in this paper, we limit our geo-
graphical load balancing to data centers dispersed throughout a small region
(e.g., France or Europe) where routing requests among different data centers
will not significantly affect response time as network delays remains in an
acceptable range. We are interested to extend our system for worldwide geo-
graphical load balancing in which network proximity of the user is considered
in the policy.

The rest of our future work will focus on renewable energy-aware ge-
ographical load balancing for other types of workloads/applications such
as bag of tasks, scientific workflows, where platforms and tools such as
Ancka [43] or workflow engine [44] can be employed. Demand response and
capping the brown power consumption to reduce carbon footprint and to
promote carbon neutrality are among recent topics of interests which can
also be considered as future research targets.

Acknowledgments

This work was partially supported by Australian Research Council (ARC)
Future Fellowship and Discovery Project grants. Experiments presented in
this paper were carried out using the Grid’5000 testbed, supported by a sci-
entific interest group hosted by INRIA and including CNRS, RENATER and
several Universities as well as other organizations (see https://www.grid5000.1r).
Authors would like to thank Adam Wierman from Caltech for his inspiring
thoughts on this work and David Margery and Laurent Lefevre from Inria
for their technical support of the experiments. They would also like to thank
Rodrigo N. Calheiros, the editors of this journal, and three anonymous re-
viewers for their many helpful comments and suggestions on an earlier version
of this article.

References

[1] NRDC, Anthesis, Scaling up energy efficiency across the data center
industry: Evaluating key drivers and barriers, Tech. rep., Natural Re-
sources Defense Council (2014).

31

2]

I. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, R. Bian-
chini, Greenhadoop: Leveraging green energy in data-processing
frameworks, in: Proceedings of the 7th ACM FEuropean Confer-
ence on Computer Systems, EuroSys ’12, ACM, 2012, pp. 57-70.
doi:10.1145/2168836.2168843.

M. Lin, Z. Liu, A. Wierman, L. Andrew, Online algorithms
for geographical load balancing, in: Proceedings of the Interna-
tional Green Computing Conference, IGCC ’12; 2012, pp. 1-10.
d0i:10.1109/IGCC.2012.6322266.

Z. Liu, M. Lin, A. Wierman, S. H. Low, L. L. Andrew, Greening
geographical load balancing, in: Proceedings of the ACM SIGMET-
RICS Joint International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS 11, ACM, 2011, pp. 233-244.
doi:10.1145/1993744.1993767.

M. Adnan, R. Sugihara, R. Gupta, Energy efficient geographical load
balancing via dynamic deferral of workload, in: Proceedings of the 5th
IEEE International Conference on Cloud Computing, CLOUD ’12, 2012,
pp. 188-195. doi:10.1109/CLOUD.2012.45.

M. Lin, A. Wierman, L. L. H. Andrew, E. Thereska, Dynamic right-
sizing for power-proportional data centers, in: Proceedings of INFO-
COM 2011, 2011, pp. 1098-1106. doi:10.1109/INFCOM.2011.5934885.

Z. Liu, M. Lin, A. Wierman, S. H. Low, L. L. Andrew, Geographical load
balancing with renewables, SIGMETRICS Perform. Eval. Rev. 39 (3)
(2011) 62-66. doi:10.1145/2160803.2160862.

N. Grozev, R. Buyya, Multi-cloud provisioning and load distribution for
three-tier applications, ACM Transactions on Autonomous and Adap-
tive Systems (TAAS) 9 (3) (2014) 13:1-13:21. doi:10.1145/2662112.

B. Urgaonkar, P. Shenoy, A. Chandra, P. Goyal, T. Wood, Agile dy-
namic provisioning of multi-tier internet applications, ACM Transac-
tions on Autonomous and Adaptive Systems (TAAS) 3 (1) (2008) 1:1-
1:39. doi:10.1145/1342171.1342172.

32

[10]

[11]

[12]

[13]

[16]

[17]

[18]

J. Jiang, J. Lu, G. Zhang, G. Long, Optimal cloud resource auto-scaling
for web applications, in: Proceedings of the 13th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, CCGrid 13,
2013, pp. 58-65. do0i:10.1109/CCGrid.2013.73.

H. Fernandez, G. Pierre, T. Kielmann, Autoscaling web applications in
heterogeneous cloud infrastructures, in: Proceedings of IEEE Interna-
tional Conference on Cloud Engineering, IC2E 14, 2014, pp. 195-204.
doi:10.1109/1C2E.2014.25.

R. Bolze, F. Cappello, E. Caron, M. Daydé, F. Desprez, E. Jeannot,
Y. Jégou, S. Lanteri, J. Leduc, N. Melab, et al., Grid’5000: a large
scale and highly reconfigurable experimental grid testbed, International
Journal of High Performance Computing Applications 20 (4) (2006) 481—
494. doi:10.1177/1094342006070078.

F. Clouet, S. Delamare, J.-P. Gelas, L. Lefevre, L. Nussbaum, C. Parisot,
L. Pouilloux, F. Rossigneux, A unified monitoring framework for en-
ergy consumption and network traffic, in: International Conference on
Testbeds and Research Infrastructures for the Development of Networks
& Communities, TridentCom 15, 2015, p. 10.

E.-J. van Baaren, Wikibench: A distributed, wikipedia based web appli-
cation benchmark, Master’s thesis, VU University Amsterdam (2009).

M. A. Green, K. Emery, Y. Hishikawa, W. Warta, E. D. Dunlop, Solar
cell efficiency tables (version 45), Progress in photovoltaics: research
and applications 23 (1) (2015) 1-9. doi:10.1002/pip.2573.

Solar Radiation on a Tilted Surface, http://
pveducation.org/pvcdrom/properties-of-sunlight/
solar-radiation-on-tilted-surface.

M. Fripp, R. H. Wiser, Effects of temporal wind patterns on
the value of wind-generated electricity in california and the north-
west, I[EEE Transactions on Power Systems 23 (2) (2008) 477-485.
doi:10.1109/TPWRS.2008.919427.

EDF, Fossil-fired energy.
URL http://energie.edf.com/fichiers/fckeditor/Commun/En_

33

[19]

[20]

[21]

[22]

[25]

Direct_Centrales/collection_nos_energies/edf_thermique_bd_
va.pdf

K. Le, R. Bianchini, T. D. Nguyen, O. Bilgir, M. Martonosi, Capping
the brown energy consumption of internet services at low cost, in: Pro-
ceedings of the International Green Computing Conference, IGCC 10,
2010, pp. 3-14. doi:10.1109/GREENCOMP.2010.5598305.

F. Kong, X. Liu, A survey on green-energy-aware power management
for datacenters, ACM Computing Surveys 47 (2) (2014) 30:1-30:38.
doi:10.1145/2642708.

J. Shuja, A. Gani, S. Shamshirband, R. W. Ahmad, K. Bilal, Sustain-
able cloud data centers: A survey of enabling techniques and technolo-
gies, Renewable and Sustainable Energy Reviews 62 (2016) 195-214.
d0i:10.1016/j.rser.2016.04.034.

C.-M. Wu, R.-S. Chang, H.-Y. Chan, A green energy-efficient
scheduling algorithm using the dvfs technique for cloud datacen-
ters, Future Generation Computer Systems 37 (2014) 141-147.
d0i:10.1016/j.future.2013.06.009.

A. Beloglazov, R. Buyya, Managing overloaded hosts for dynamic con-
solidation of virtual machines in cloud data centers under quality of
service constraints, IEEE Transactions on Parallel and Distributed Sys-
tems 24 (7) (2013) 1366—-1379. doi:10.1109/TPDS.2012.240.

S. Srikantaiah, A. Kansal, F. Zhao, Energy aware consolidation for cloud
computing, in: Proceedings of the USENIX 2008 conference on Power
aware computing and systems, Vol. 10 of HotPower ’08, San Diego,
California, 2008.

M. Ghamkhari, H. Mohsenian-Rad, Energy and performance man-
agement of green data centers: A profit maximization ap-
proach, IEEE Transactions on Smart Grid 4 (2) (2013) 1017-1025.
doi:10.1109/TSG.2013.2237929.

A. Beloglazov, R. Buyya, Y. C. Lee, A. Zomaya, A taxonomy and survey
of energy-efficient data centers and cloud computing systems, Advances
in computers 82 (2) (2011) 47-111.

34

[27]

28]

[29]

[32]

[33]

J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji,
S. U. Khan, Survey of techniques and architectures for designing energy-
efficient data centers, IEEE Systems Journal 10 (2) (2016) 507-519.
do0i:10.1109/JSYST.2014.2315823.

[. Goiri, W. Katsak, K. Le, T. D. Nguyen, R. Bianchini, Para-
sol and greenswitch: Managing datacenters powered by renewable
energy, SIGARCH Comput. Archit. News 41 (1) (2013) 51-64.
doi:10.1145/2490301.2451123.

Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Mar-
wah, C. Hyser, Renewable and cooling aware workload management for
sustainable data centers, in: Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measure-
ment and Modeling of Computer Systems, SIGMETRICS 12, ACM,
2012, pp. 175-186. doi:10.1145/2254756.2254779.

I. Goiri, K. Le, M. E. Haque, R. Beauchea, T. D. Nguyen, J. Guitart,
J. Torres, R. Bianchini, Greenslot: Scheduling energy consumption in
green datacenters, in: Proceedings of the 2011 International Conference

for High Performance Computing, Networking, Storage and Analysis,
SC ’11, ACM, 2011, pp. 20:1-20:11. doi:10.1145/2063384.2063411.

C. Stewart, K. Shen, Some joules are more precious than others: Manag-
ing renewable energy in the datacenter, in: Proceedings of the Workshop
on Power Aware Computing and Systems (HotPower) in 22nd ACM
Symposium on Operating Systems Principles, SOSP 09, 2009, pp. 15—
19.

A. Rahman, X. Liu, F. Kong, A survey on geographic load balanc-
ing based data center power management in the smart grid environ-
ment, IEEE Communications Surveys Tutorials 16 (1) (2014) 214-233.
doi:10.1109/SURV.2013.070813.00183.

J. He, X. Deng, D. Wu, Y. Wen, D. Wu, Socially-responsible load
scheduling algorithms for sustainable data centers over smart grid,
in: Proceedings of the Third IEEE International Conference on
Smart Grid Communications, SmartGridComm ’12, 2012, pp. 406—411.
doi:10.1109/SmartGridComm.2012.6486018.

35

[34]

[35]

[36]

[41]

C. Chen, B. He, X. Tang, Green-aware workload scheduling in geo-
graphically distributed data centers, in: Proceedings of 4th IEEE In-
ternational Conference on Cloud Computing Technology and Science,
CloudCom ’12, 2012, pp. 82-89. doi:10.1109/CloudCom.2012.6427545.

D. Paul, W.-D. Zhong, S. K. Bose, Energy efficiency aware load distri-
bution and electricity cost volatility control for cloud service providers,
Journal of Network and Computer Applications 59 (2016) 185-197.
d0i:10.1016/j.jnca.2015.08.012.

J. L. Berral, . Goiri, T. D. Nguyen, R. Gavald, J. Torres, R. Bian-
chini, Building green cloud services at low cost, in: Proceedings of the
34th IEEE International Conference onDistributed Computing Systems,
ICDCS 14, 2014, pp. 449-460. doi:10.1109/ICDCS.2014.53.

K. Le, O. Bilgir, R. Bianchini, M. Martonosi, T. D. Nguyen, Managing
the cost, energy consumption, and carbon footprint of internet services,
in: Proceedings of the ACM International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS 10, ACM, 2010,
pp. 357-358. doi:10.1145/1811039.1811085.

P. X. Gao, A. R. Curtis, B. Wong, S. Keshav, It’s not easy being green,
SIGCOMM Computer Communication Review 42 (4) (2012) 211-222.
doi:10.1145/2377677.2377719.

Z. Abbasi, M. Pore, S. K. S. Gupta, Online server and workload man-
agement for joint optimization of electricity cost and carbon footprint
across data centers, in: Proceedings of the 28th IEEE International
Parallel and Distributed Processing Symposium, IPDPS 14, 2014, pp.
317-326. doi:10.1109/IPDPS.2014.42.

H. Goudarzi, M. Pedram, Geographical load balancing for online service
applications in distributed datacenters, in: Proceedings of the 6th IEEE
International Conference on Cloud Computing, Cloud 13, 2013, pp.
351-358. doi:10.1109/CLOUD.2013.77.

Y. Kanizo, D. Raz, A. Zlotnik, Efficient use of geographically spread
cloud resources, in: Proceedings of the 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, CCGrid ’13, 2013,
pp. 450-457. doi:10.1109/CCGrid.2013.18.

36

[42]

[44]

Y. Zhang, Y. Wang, X. Wang, Greenware: Greening cloud-scale data
centers to maximize the use of renewable energy, in: F. Kon, A.-M. Ker-
marrec (Eds.), Middleware 2011, Vol. 7049 of Lecture Notes in Computer
Science, Springer Berlin Heidelberg, 2011, pp. 143-164. doi:10.1007/978-
3-642-25821-3_8.

R. Buyya, D. Barreto, Multi-cloud resource provisioning with aneka: A
unified and integrated utilisation of microsoft azure and amazon EC2
instances, in: Proceedings of the 2015 International Conference on Com-
puting and Network Communications, CoCoNet ’15, IEEE, 2015, pp.
216-229. doi:10.1109/CoCoNet.2015.7411190.

S. Pandey, D. Karunamoorthy, R. Buyya, Workflow engine for clouds,
in: R. Buyya, J. Broberg, A. Goscinski (Eds.), Cloud Computing: Prin-
ciples and Paradigms, John Wiley & Sons, Inc., 2011, pp. 321-344.
d0i:10.1002/9780470940105.ch12.

37

