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Abstract

Digital Teaching Platforms (DTPs) are aimed to support personalization of classroom education to help optimize the
learning process. A trend for research and development exists regarding methods to analyze multimodal data, aiming
to infer how students interact with delivered content and understanding student behavior, academic performance, and
the way teachers react to student engagement. Existing DTPs can deliver several types of insights, some of which
teachers can use to adjust learning activities in real-time. These technologies require a computing infrastructure ca-
pable of collecting and analyzing large volumes of data, and, for this, cloud computing is an ideal candidate solution.
Nonetheless, preliminary field tests with DTPs demonstrate that applying fully remote services is prohibitive in sce-
narios with limited bandwidth and a constrained communication infrastructure. Therefore, we propose an architecture
for DTPs and an algorithm to promote the adjustable balance between local and federated cloud resources. The so-
lution works by deciding where tasks should be executed, based on resource availability and the quality of insights
they may provide to teachers during learning sessions. In this work, we detail the system architecture, describe a
proof-of-concept, and discuss the viability of the proposed approach for practical scenarios.

Introduction

The Digital Teaching Platform (DTP) [1, 2] is a cate-
gory of solutions designed to bring interactive technol-
ogy to teaching and learning in classrooms. This tech-
nology allows for the collection of multimodal data in-
cluding video, audio, text, and events triggered by the
interaction of students with digital content. The result-
ing datasets are processed to classify, understand, and
predict factors that affect learning performance in re-
lation to social and individual phenomena [3, 4]. The
combination of these elements provides a continuous
feed of relevant information about the level of student
engagement and learning performance. Additionally,
analysis of this feed enables a system to monitor mean-
ingful signals uninterruptedly and promote adjustments
towards improvement of learning performance. This
scenario is the subject of research and development and
is currently somewhat of a grand challenge.

An important challenge for the implementation of
DTPs is to provide an adequate computing infrastruc-
ture to collect, store, and process large volumes of data,

∗Corresponding author: fkoch@acm.org

considering the requirements and characteristics of cur-
rent and future digital education process [5, 6, 7, 8].
Moreover, there is a trend in using mobile devices by
students and educators in teaching and learning activi-
ties [9, 10], increasing the range and scope of education
and the complexity of the back-end infrastructure.

Cloud computing seems to be an ideal candidate so-
lution to address these infrastructure challenges as it
copes with the trend of distributed educational informa-
tion [11, 12, 13, 14]. However, preliminary field tests
demonstrated that fully remote services require com-
munication infrastructure capabilities that currently are
not available in certain locations. This is due to large
amounts of data being collected and demand for: (a) low
latency interactions for near real-time teacher support;
(b) high quality of service to provide accurate informa-
tion for decision support; and (c) optimized data transfer
processes to cope with limitations on schools’ commu-
nication networks and overall physical infrastructure.
There is a demand for new methods of distributed com-
puting for digital education in emerging markets that
would be able to cope with limited local processing ca-
pabilities and communication networks. In addition, we
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seek online services able to provide support to teachers
while lecturing.

Motivated by this demand, we conceived an archi-
tecture for using cloud computing for Digital Teach-
ing Platforms that, with the support of a resource al-
location algorithm, supports the distribution of data
analysis modules between local and remote resources
by exploiting inherent features of context inference
[15, 16, 17, 18]. Here, context comprises factors such
as resource availability, the quality of insights teachers
may demand during learning sessions and their impor-
tance, and the tasks that can be performed using locally
hosted resources. The proposed model prioritizes the
use of local resources to run analyses that help teach-
ers to gauge students’ engagement level during sessions.
We also report results of a simulation-based evaluation
of the model, showing how it maximizes the teacher’s
utility while coping with infrastructure resource con-
strains.

Challenges in DTP Data Collection and Processing

Several types of data streams are available in digital
education environments. For instance, we are testing
with video capturing for visual sentiment analysis with
respect to the content being presented. We also experi-
mented with environmental audio analysis to determine
the level of activity in the classroom or even estimate
students’ stress level. Moreover, analysis of events cap-
tured from the students’ interactions with digital content
result in methods to infer levels of activity and attention
[19].

The complete scenario is described as follows (see
Figure 1 and numbers in parentheses). Sensors in the
classrooms collect signals, video, and audio files, which
are transmitted to local servers and (1) stored in a local
repository (cache) of data and events. This information
is processed by (2) low-latency algorithms tailored to
estimate student education indicators, e.g., level of ac-
tivity and attention, which teachers can use to decide
on learning activities to improve student’s performance.
An Analysis Coordination (AC) algorithm (3) plays the
central role in the composition, supporting the distribu-
tion and configuration of local and remote data analysis
modules. The remote server implements (4) advanced
modules for thorough analysis of education parameters,
considering aggregated data from multiple classrooms.
This processing populates a (5) repository of aggregated
events and a (6) repository of classified information,
containing inferred profiles of students, groups, teach-
ers, and material. An inferred profile is composed of
information that was not directly provided by the user,

but inferred based on data that has been collected. At
this level, social learning and predictive learning ana-
lytics can be applied to the data stored in the reposi-
tories. Educators and administrators apply this infor-
mation to assess learning performance and to support
decision-making with respect to adjustments of the ed-
ucation process and material.

The first challenge detected in this scenario relates to
the volume of data. Observations from state-of-the-art
DTP technologies yield the following numbers: 60 MB
to 80 MB of event log files produced per student per
hour, or around 1.3 GB per hour for a classroom of 30
students, which is the Brazilian average for traditional
schools. Also, there is 1.5 GB per hour of video per
camera (using 720p resolution and MPEG4 compres-
sion), with two cameras normally being used. A front
camera is used for face sentiment analysis and presence
detection, and a rear camera is used for teacher move-
ment analysis and class recording. Such volumes of data
cannot be transmitted for remote processing even us-
ing fast network connections due to performance chal-
lenges.

The second challenge refers to expected response
time (or feedback velocity). The information collected
by a DTP must be processed in order to enable mul-
timodal evaluation of students’ performance and, ulti-
mately, to support real-time recommender systems for
learning activities. The response time of an algorithm
typically depends on its configurations; i.e., more de-
tailed analysis conducted on more complex data typ-
ically requires more time, which generally achieves
higher quality of the results.

Moreover, there is a challenge associated with the
granularity level with which data is collected, and we
may consider an aggregated level and individual level.
The first category refers to data describing how students
are reacting as a group. For instance, videos recorded
by cameras placed in the classroom’s corners, devices
such as sound detectors, light sensors, and thermome-
ters can be used to capture aggregated-level information
in classrooms. The second category describes and stores
how each student interacts with educational material,
e.g., time spent over an educational activity, screen po-
sitions touched by students during a class, written com-
ments, and textual highlights. This data can be recorded
because tablets being used by students in the classroom
are equipped with sensors and logging applications that
register this type of information.

Each analysis requires a level of accuracy depending
on the purpose of the information being delivered. For
instance, data accuracy may be lower in group analy-
sis than in individual assessments. Finally, there is the
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Figure 1: Architecture for using cloud computing for a Digital Teaching Platform.

problem of processing distribution. Some of the algo-
rithms employed by learning analytics and social ana-
lytics are highly parallelizable, in the sense that they
need very restricted (or local) input data, and their exe-
cution does not require communication with other tasks.
Such tasks are typically restricted to data produced by
an individual learning session. For instance, assessing
differences on the performance of student(s) attending
a particular classroom is a highly parallelizable task.
Conversely, analysis requiring comparisons and correla-
tions between datasets collected in several sessions de-
pend on data aggregation.

The elements described above comprise the set of
parameters affecting the execution of analytics tasks
typically executed by a DTP. Examples of algorithms
and insights are (i) a recommender system to support
class composition by suggesting complementary edu-
cational content; (ii) a search engine to retrieve educa-
tional content; (iii) an attention-level measure that eval-
uates whether the students are following the educator
during class; (iv) a tag cloud, based on the educational
content; and (v) a post-class recommender system that
analyses students’ performance and recommends com-
plementary educational content for homework activi-
ties. Choices are restricted by the amount of compu-
tational resources that the local system provides, so one
would ideally choose a subset that maximizes teacher’s
utility, which in practice translates to information that

may be employed in real-time.

In this paper, we investigate the use of insights pro-
duced in real-time for learning sessions conducted in
schools equipped with low-end computers, with limited
access to broadband Internet connections, and with re-
stricted access to cloud computing solutions. In these
situations, computational tasks may neither be com-
pletely delegated to remote servers nor entirely pro-
cessed in the local computational environment, and
teachers can only use information generated by algo-
rithms executed locally. Therefore, there is a need for
an optimal balance between local and remote process-
ing. We must exploit inherent features of digital edu-
cation scenarios to develop tailored techniques for pro-
cessing distribution, such as features of the educational
material (material profile), students’ social setting (stu-
dents profile), and pedagogical setting (teacher profile)
(see Table 1).

In summary, the challenge we address in this article
involves how to select algorithms to be executed in real-
time (or, similarly, on the local server) given constraints
related to volume of data, feedback velocity, level of ac-
curacy, processing distribution, and resource limitations
by exploring contextual information in learning scenar-
ios.

Finally, we note that there are several ethical and ped-
agogical challenges involved in the deployment of digi-
tal education technologies. In practice, experiments and
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Table 1: Profile parameters in digital education.

Parameter Reason Applicability

Material
profile

Predict data complexity
based on characteristics
of content; more input
points will lead to more
log entries.

Adjust configuration to
cope with more entries
depending on demand
for latency; e.g. reduce
sampling rate.

Group
Profile

Predict students’
performance based on
task resolution and
interactions with
content. Predicts their
level of attention,
orderliness, and activity.

Adjust algorithm
distribution
configuration to cope
with the stream of
students interactions
data and the precision of
the prediction feedback.

Teacher
Profile

Predicts teachers’
demand for information
during classroom and
activity performance.

Adjust algorithm
distribution and
configuration to cope
with level of information
demand and activity.

tests involving such platforms typically involve under-
graduate students (i.e., adult individuals), who are aware
of all data being collected and who provide explicit au-
thorization for the use of their data. Additionally, data
anonymization is employed in order to minimize poten-
tial issues with privacy.

Using Cloud Computing in DTP

The proposed architecture relies on an analysis co-
ordination module to distribute processing of analyt-
ics algorithms between two layers of resources: a local
layer, containing computational resources located in the
schools, and a remote layer, which is typically cloud-
based. Additionally, it must select adequate configura-
tions for each algorithm.

The problem consists of selecting a set of algorithms
to be executed on the local layer; these algorithms, ap-
plied to data being dynamically generated by sensors
installed in the classroom, generate insights and rec-
ommendations that may be employed by teachers in
real-time. Each algorithm admits different configura-
tions, which affect the volume of resources and the qual-
ity (or utility) of the results they produce. Ideally, a
method will select a set of algorithms, together with
their respective configurations, that will respect the lo-
cal layer’s processing capacity and deliver high utility
(i.e., provide high-quality results).

A formal description of the problem is as follows. We
have a set of algorithms and, for each a ∈ A, we have a
set c(a) ∈ C of configurations. Given an algorithm a, a
configuration c in c(a), and an input data i, the quality

of the results (or utility) is given by function q(a, c, i)
and the associated resource consumption by r(a, c, i).
Moreover, given a and i, we assume that changes on
c lead to correlated changes on q(a, c, i) and r(a, c, i);
i.e., changes in c that increase q(a, c, i) will also increase
r(a, c, i) (for more quality, one needs to spend more re-
sources). Each dataset i is prone to variations in size and
even type, but we can assume that the performance of al-
gorithms in A depends only on the level of complexity
l(i) of i, and not on i specifically.

We assume that a solution’s utility index is propor-
tional to the sum of the quality of all results that were
produced in the local layer. Quality in this context will
ideally reflect the level of interest a teacher has on each
individual result. For instance, it may be equal to the
frequency with which these results have been used in
previous learning sessions; alternatively, it may also re-
flect a rank of the algorithms provided a priori by the
teacher, thus allowing for personalization from her per-
spective. Teachers cannot use information extracted
from the remote layer during a learning session, so al-
gorithms executed in this layer do not contribute to the
solution’s utility. Moreover, if q(a, c1, i) > q(a, c2, i),
then all the information produced by a with configura-
tion c2 is also produced by with configuration c1, that
is, one does not have any incentive to execute the same
algorithm with two different configurations.

Based on the description above, our problem is to de-
termine a set of pairs S ⊆ A ×C maximizes∑

(a,c)∈S

q(a, c, i)

The set of pairs is subject to a restriction on the number
of available resources, given by:∑

(a,c)∈S

r(a, c, i) ≤ R

where R ∈ N denotes the number of computational re-
sources provided by the local layer. One can clearly see
that this is a variation of the Knapsack Problem, a clas-
sical NP-complete combinatorial optimization problem
[20, 21]. This problem clearly belongs to the complex-
ity class NP. Namely, the classical Knapsack Problem
can be reduced to it by constructing instances where
|c(a)| = 1.

Algorithm 1 contains the description of Knapsack
Scheduler, a pseudo-polynomial algorithm that solves
the problem. Notice that we use q(a, c) and r(a, c) in-
stead of q(a, c, i) and r(a, c, i), respectively, as we do not
need to represent i explicitly in Algorithm 1.

Knapsack Scheduler employs a dynamic program-
ming approach that is very similar to the one typically
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Algorithm 1: Knapsack Scheduler (A,C,R).
1 for (a, r) ∈ A × R do
2 S (a, r) = 0

3 for c ∈ c(a1) do
4 for r(a1, c) ≤ r ≤ R do
5 S (a1, r) = max[S (a1, r), q(a1, c)]

6 for 2 ≤ i ≤ |A| do
7 for c ∈ c(ai) do
8 for 0 ≤ r < r(ai, c) do
9 S (ai, r) = max[S (ai, r), S (ai−1, r)]

10 for r(ai, c) ≤ r ≤ R do
11 S (ai, r) =

max{S (ai−1, r), S [ai−1, r − r(ai, c)] + q(ai, c)}

12 return S

used to solve the Knapsack problem. Note that the opti-
mal utility value is presented in S (a|A|, r) and that an op-
timal configuration can be directly extracted from S . Fi-
nally, we note that one may substitute q(a, c, i) for some
utility function u(a, c, i) and employ Knapsack Sched-
uler as it is just by changing q(a, c) for u(a, c) accord-
ingly.

Computational Experiment

In this section, we present implementation details of
our approach and describe experimental results that use
synthetic workloads created with information gathered
during a proof-of-concept deployment.

Technical Description

We assembled a proof-of-concept experiment to eval-
uate the effectiveness of Knapsack Scheduler with vari-
ations of deployment parameters. The system architec-
ture, depicted in Figure 2, comprises a local server and
provides a Representational State Transfer (REST) In-
terface for Data Entry and Information Query (see (1)
in Figure 2), including the input of data from sensors,
video, and audio, along with a query of stored data,
compiled events, and recommendation systems to pro-
vide support for teachers during the class.

The system also provides a Local Repository of Col-
lected Data and Inferred Events and Warnings (see (2)
in Figure 2), which concentrates raw data from sensors.
Inferences are realized through this data, and the warn-
ings are generated. An example is an inference algo-
rithm that notifies the educator regarding students who
have not interacted with the application for a long pe-
riod of time.

The Configurable Services for Low Latency Data
Analysis (see (3) in Figure 2) compile information re-
quired for near real-time decision support and warning.
The selection of services should take into account the
limitations of the platform. For instance, if the recom-
mender system requires a certain amount of processing
and network bandwidth during a class with limited hard-
ware and network resources, this service might not be
executed.

The Service for Analysis Coordination (4) controls
the distribution and configuration of both local and re-
mote data analysis modules. For instance, an inference
algorithm for attention level can only be performed by
one system with determined characteristics.

Inference tasks are accomplished based on infor-
mation stored in Repository of Aggregated Multi-
Classroom Events (5) and Repository of Classified Pro-
file Information (6). These repositories are populated
by both (a) data uploaded from local servers at the end
of classes and (b) compiled data, from the processing of
Configurable Services for Data Analysis Modules (7).
The composition also provides a REST interface (8) for
querying information, through which analytic services
and coordination applications can access information
from the platform, supporting, for instance, analytic re-
ports, event information, and warnings.

Supported by the proposed architecture, the local
server is deployed on a low-end computer (e.g., Rasp-
berry Pi, an Intel Next Unit of Computing), running
Linux, a REST Web Application Programming Inter-
face (API), and a Java Virtual Machine. The remote
server runs on a cloud environment with a similar con-
figuration.

The data analysis modules are programmed in Java
and/or Python, facilitating the portability of modules be-
tween the platforms, so long as the required libraries are
loaded on both ends. The content delivered to students
during learning sessions comprises chapters that contain
learning objects. Students’ interactions with the con-
tent and sensors deployed on the devices used in class
generate events that are initially uploaded to the local
server. Each event is a tuple (event:StudentID, Edu-
cationalContentID, EventID) and requires 617 bytes of
storage on average. Table 2 presents examples of in-
ferences, recommendations, and contextualized search
engines.

Experimental Setup and Metrics
In order to evaluate the performance of the proposed

approach, we considered two variations of configura-
tion parameters regarding educational settings and op-
erational configurations. The first variation includes
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Table 2: Algorithms for inference, recommendation, and search.

Name Description

Activity Recognition supported by sensors Detects and identifies the gestures from users in classroom environments, using a tablet,
to infer the students’ interest in the contents presented during the class.

Search of Learning Contents Interface to search Learning Objects based on content target, contextual profile, student
profile, and a natural language textual input.

Context Inference from gestures and
handling of digital content

Algorithm to detect and classify gestures from users in classroom environments, using a
tablet, to identify students’ interest in the contents presented during the class. Currently
provides a feedback to the professor about the students’ attention levels.

Material Optimization Recommendation Mathematical-probabilistic analysis of a combination with respect to content
parameters, individual and group profiles, and contextual classification (from other
methods) in order to find the fittest combination set of Learning Objects.

Recommendation of Complementary
Material

Method to build and analyze sets of students profiles, and, based on the set of Learning
Objects, automatically suggest complementary Learning Objects for each set of
<students profiles, Learning Objects>.

Group Attention Level Assessment Infer and evaluate the level of attention in a group of students based on the analysis of
Activity Recognition supported by sensors; for instance, asses the matching between
content being presented by teacher and visualized by students.

Visual Sentiment Analysis Method to analyze video for facial expressions to provide sentiment analysis inferring
the individual apathy with respect to presented material.

Visual Movement Tracking Analysis Track level of body movement among the group of students to infer the level of activity
and the social behavior.

Audio Activity Analysis Analyze fluctuations in audio level from open microphones to infer the level of activity
and the social behavior.

variations on material profiles’ and student profiles’ and
how they affect the demand for computational resource
and network distribution. The second involves varia-
tions in the distribution of computational processing and
how this affects the quality of service. We then analyzed
how these configurations affect the overall system per-
formance and perceived utility.

For the experiments, we simulated the synthetic

workloads based on empirical observations with re-
spect to classrooms with state-of-the-art DTP technol-
ogy, composed of a set of classes C. In this scenario,
each subject lasts for 60 minutes and consists of a num-
ber of chapters uniformly distributed between 5 and 7;
each chapter is made available at a specific time during
class and contains from 6 to 10 learning objects, which
can be text, image, or video.

6



We observed that approximately 20% of the learning
objects are text, 30% are images, and 50% are videos.
A classroom is composed of 20% highly active students
(producing an average of 60 events per learning object),
60% normally active students (producing an average of
28 events per learning object), and 20% low active stu-
dents (producing an average of 12 events per learning
object). This information is used to generate a stream of
events to be processed. The analyses are performed ev-
ery 15 seconds. For each class, one machine with four
processor cores was simulated to carry out the analyses.

We considered scenarios involving nine algorithms
(or analyses), as illustrated in Table 2. We employed
three data sample sizes , namely 0.3, 0.6, and 1.0, which
determine the number of events that are considered for
processing, out of the total number of events that arrived
in a given time frame. Moreover, each analysis is asso-
ciated with some value v ∈ [0, 1] representing its impor-
tance. Quality q(a, c, i) of analysis under configuration
is given by 2sv, that is, if the importance v of a is 0.7
and the sample size for c is 0.6, then q(a, c, i) = 1.34.
The time required to execute an analysis configuration
on a dataset depends on the total number of events to
process, the complexity of the analysis, and the sample
size.

At every 10 minutes, our platform executes a selec-
tion algorithm that determines, for the next 10 minutes,
the analysis configurations that should be carried out lo-
cally, and what should be offloaded to the cloud. The
goal is to execute locally the analyses that maximize the
overall quality, which, as mentioned earlier, translates to
maximizing the teacher’s utility. In order to determine
the resource demand of selected analyses, the selection
algorithms consider the number of events that arrived
during the previous 10 minutes.

Two algorithms are considered for selecting the anal-
yses, namely Knapsack Scheduler (described before-
hand) and a greedy algorithm that orders configurations
by their expected quality and selects those whose re-
source demands do not surpass the resource capacity of
the local machine.

Two metrics were used to evaluate the selection and
placement of analyses: (1) Aggregate teacher’s utility,
that is, the sum of qualities of configurations at each
selection interval, and (2) Number of analysis tasks of-
floaded to the cloud, the number of analysis tasks that
are offloaded to be executed in the cloud, thus incurring
delays and slower response times.

We vary the number of classes from 50 to 100 to eval-
uate the approach under different numbers of classes
and students. All presented results are averages of 5
simulation rounds using different simulation seeds for

the random number generators at each round.
With analysis (1), we want to determine which algo-

rithm performed better considering the different param-
eters of event processing; such processing is important
to determine the quality of the results (utility). Analysis
(2) determines which algorithm led to greater reductions
in bandwidth and cloud processing.

Results and Analysis

Figure 3 summarizes the results on aggregate teach-
ers’ utility. As we can observe, the utility delivered
by Knapsack Scheduler is clearly superior to the one
yielded by the greedy approach. In our experiments, the
allocation problems associated with learning sessions
were pairwise independent, so the results suggest that
Knapsack Scheduler is consistently better, as its superi-
ority was increasing together with the number of learn-
ing sessions considered in the simulation.
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Figure 3: Aggregate teacher’s utility delivered by configurations exe-
cuted locally

We note that this superiority is closely related to the
definition of the utility function. The values of q(a, c, i)
used in our experiments are such that differences be-
tween high-value and low-value utilities are small, so
the greedy approach may choose analyses that are only
marginally better but require much more resources.

These results cannot be considered surprising. Clas-
sic results coming in approximation theory show that it
is possible to construct synthetic instances for which the
greedy algorithm for the Knapsack Problem will deliver
arbitrarily bad solutions. Note that this result cannot
be directly transposed to our problem, as our algorithm
does not “know” the complete dataset beforehand (in
our experiments, we select the set of analysis before the
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arrival of student’s data). Nevertheless, our results sug-
gest that the proposed algorithm better utilizes the lo-
cal resources and delivers superior utility to teachers in
practical settings.

Another interesting fact about the results of our ex-
periments related to the number of tasks that are of-
floaded to the cloud in real-time. The exponential util-
ity function induced Knapsack Scheduler to pick all
analyses in all instances with minimum sample ratio.
Although individual quality was sacrificed, Knapsack
Scheduler allowed the instructor to extract more infor-
mation from the dataset. Additionally, note that such
solutions avoid the transmission of data for execution
in the remote layer; this aspect has not been considered
in this paper, but we note that it is also of practical rel-
evance (reductions of bandwidth consumption are also
important in the scenarios we are considering).

Finally, we observe that modifications in the defi-
nition of the utility function may change the magni-
tude of the differences between Knapsack Scheduler
and Greedy. Nevertheless, other experiments (omit-
ted due to space limitations) also demonstrated Knap-
sack Scheduler consistently delivering better utility val-
ues (and sending less tasks for processing in the remote
layer).

Conclusion

In this paper, we have introduced an architecture for
using cloud computing for a Digital Teaching Platform.
It promotes the intelligent coordination of the data anal-
yses between local and remote resources by exploiting
inherent features in context inference. We developed
Knapsack Scheduler, an algorithm that balances (i) pre-
dicted distribution of intelligent algorithms and (ii) pre-
dicted configurations to be applied. The challenge is
to cope with the computationally expensive process of
evaluating the quality of solutions.

As simulations based on data collected from a pilot
deployment demonstrate, Knapsack Scheduler selects
the analyses that deliver the best overall utility and re-
duces the number of tasks that are offloaded to the cloud,
hence better utilizing the locally available resources.
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C. Alario-Hoyos, A linked data approach for the
discovery of educational ict tools in the web of
data, Computers & Education 59 (3) (2012) 952–
962.

[14] K. Kumar, J. Liu, Y.-H. Lu, B. Bhargava, A sur-
vey of computation offloading for mobile systems,
Mobile Networks and Applications 18 (1) (2013)
129–140.

[15] M. D. de Assuncao, M. A. S. Netto, F. Koch,
S. Bianchi, Context-aware job scheduling for
cloud computing environments, in: IEEE/ACM
Fifth International Conference on Utility and
Cloud Computing (UCC 2012) Workshops, IEEE
Computer Society, Washington, USA, 2012, pp.
255–262. doi:10.1109/UCC.2012.33.
URL http://dx.doi.org/10.1109/UCC.

2012.33

[16] F. Koch, M. D. Assunçao, M. A. Netto, A cost
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