
Enabling the Simulation of Service-Oriented
Computing and Provisioning Policies for

Autonomic Utility Grids

Marcos Dias de Assunção1,2, Werner Streitberger3,
Torsten Eymann3, and Rajkumar Buyya1

1 Grid Computing and Distributed Systems (GRIDS) Laboratory
2 NICTA Victoria Research Laboratory
The University of Melbourne, Australia
{marcosd, raj}@csse.unimelb.edu.au

3 Chair for Information Systems Management
University of Bayreuth, Germany

{streitberger, eymann}@uni-bayreuth.de

Abstract. There are key challenges in utility computing environments
such as the provisioning, orchestration and allocation of resources to
services. In these environments, providers need to decide how resources
are allocated to service applications according to their workloads in or-
der to guarantee the Quality of Service (QoS) required by customers.
Autonomic computing inspired mechanisms are appealing to enable self-
organising resource allocation and provisioning. However, these mecha-
nisms are difficult to evaluate in practice either because of the lack of
a real test bed or the difficulty in replicating experimental results. This
work thus describes a service framework for a Grid simulator. This frame-
work allows the modelling and evaluation of the provisioning and negoti-
ation of services and resources. We also discuss experimental results that
demonstrate the usefulness of this framework for the simulation of a de-
centralised and self-organising economic model for service and resource
negotiation termed Catallaxy.

Keywords: Resource provisioning, Grid computing, utility computing,
simulation framework.

1 Introduction

Service-Oriented Architectures (SOAs) underlie several Grid initiatives and re-
flect the current Grid computing infrastructure, where participants offer and
request application services. A SOA defines standard interfaces and protocols
that enable the encapsulation of resources of different complexity and value as
services that clients access without having knowledge of their internal work-
ings [1].

In current utility computing environments, resource providers host services
and provide the tools needed by scientists and companies to expose the core
functionalities of their research or business as services that are subsequently



used by clients or collaborators; providers offer their resources generally in a
pay-as-you-go manner. Virtualisation technology offers powerful resource man-
agement mechanisms for these environments by enabling performance isolation,
migration, suspension and resumption of Virtual Machines (VMs). One key is-
sue, however, is the provisioning, orchestration and allocation of resources to
services. Providers need to decide how resources are allocated to service appli-
cations according to their workloads in order to guarantee the QoS expected by
their customers. Autonomic computing [2] inspired mechanisms and policies are
appealing to enable self-organising allocation of resources to services, as well as
for service provisioning and negotiation [3, 4].

However, it is challenging to design and evaluate practical allocation policies
that permit utility computing environments to self-manage and adjust resource
allocations according to the provisioning decisions of the offered services. More-
over, it is a challenge to evaluate these policies and negotiation strategies either
due to the difficulty of replicating experiments or a lack of a real testbed.

The modelling and evaluation of these mechanisms and related policies can
be augmented by the use of simulators. However, current simulation tools focus
on issues related to resource modelling and allocation assuming in general a job
abstraction. The existing Grid simulation toolkits do not provide the features
needed to model and simulate services, their placement on resources, their work-
loads and provisioning policies let aside the abstraction of containers or VMs.
In this work, we present a framework that allows the modelling, simulation
and evaluation of mechanisms and policies for service provisioning, negotiation
and resource management. This framework supports the simulation of service-
oriented applications, and considers service dependencies, for different domains
including high-performance, on-demand and utility computing. We demonstrate
the usefulness of our framework by modelling and simulating an Application
Layer Network (ALN) and an economic model termed Catallaxy for service and
resource negotiation.

The rest of this paper is organised as follows. Section 2 presents background
and related work. Section 3 describes the service framework. In Section 4, we
present the design of a decentralised economic bargaining model for ALNs (i.e.
the Catallaxy). Section 5 presents the performance evaluation results and finally,
Section 6 concludes the paper.

2 Background and Related Work

In order to demonstrate the mechanisms and policies that we want to model
and simulate, we consider a utility data centre that hosts service applications,
and provides resources on demand to its customers’ business applications (see
Fig. 1) [5]. The centre is composed of a pool of physical resources that are man-
aged by server virtualisation technology [6]. The services offered to customers
run on Application Environments (AEs) within the resource pool, which are
isolated from one another. An AE is a set of virtual resources (i.e. containers
or VMs). The resource arbitrator allocates resources to each AE according to
the resource allocation policies in order to meet the required performance and



Clients
Requests

Physical
Resource

Strategies for Allocation
of Resources to Services

Strategies for
Service Provisioning

Resource
Arbitrator

Service
Provisioning

Virtual
Resource

Application
Environment
for Service 1

Application
Environment
for Service 2

Service 1

Service 2 }}

Fig. 1. Abstract view of a utility data centre.

QoS. Customers can utilise services without the knowledge of the internal in-
frastructure of the resource layer and the resource allocation policies. However,
customers and providers negotiate the Quality of Service (QoS) required, and
customers want to have guarantees about the service delivery. These guarantees
are stated in Service Level Agreements (SLAs). Service provisioning policies de-
fine how the service is provided in order to achieve the service levels stated in the
SLA. In this case, the provider has to decide on how the service is provisioned.

The services have a workload that can vary. The number of requests to the
hosted services and the expected QoS will guide the arbitrator on the resource
allocation decisions. The arbitrator decides on the resources required by each
service and if new resources have to be allocated to meet peak demands. A de-
coupling of service and resource layers allows one to model strategies for the
placement of services on resources and resource orchestration. One can also
evaluate distinct markets or mechanisms for service negotiation and resource
allocation. Therefore, a provider has two policies: one that defines how a service
is provisioned and another that specifies how resources are allocated.

The scenario above is an example; however, a simulation framework should
be flexible enough to enable the modelling and simulation of varying scenarios.
For instance, the ALN presented in this work follows a two-layer market model.
In one layer, resource providers provide processing and storage resources. Service
providers negotiate with resource providers to acquire capacity to host services.
The second layer corresponds to the negotiation between service providers for
the delivery of composite services. For example, a service provider can negotiate
the access to several atomic services in the service market to deliver it as a
bundle, or composite service, to its customers. Similar scenarios are considered
in other utility computing strategies [7].

2.1 Related Work

Several Grid simulators allow the modelling and simulation of Grid resources
and allocation policies; examples include OptorSim [8], SimGrid [9] and Micro-
Grid [10]. OptorSim is a discrete event simulator that follows the abstraction
of data resources. It has been designed to model and evaluate the data transfer
strategies for data Grids, and does not provide a service-oriented application
model.



MicroGrid enables the emulation of Grid environments. A user can run his
Grid application on an emulated environment, while the simulator intercepts
the exchanged messages. Although it is possible to simulate service-oriented
applications, MicroGrid does not provide a decoupling of the service and resource
layers, which would enable the design and evaluation of different mechanisms for
each layer.

SimGrid is a trace-based event simulator that provides a set of abstractions
and functionalities to build simulators for several application domains. The core
features can be used to model and evaluate parallel application scheduling on
distributed computing platforms. SimGrid also provides emulation facilities for
running distributed and parallel applications in an emulated Grid environment.
SimGrid like the the other simulators, uses the abstraction of ’resources’.

GridSim [11] is a Grid simulation toolkit that enables the modelling of ap-
plication composition, information services, and heterogeneous computational
resources of variable performance. GridSim also provides an auction framework
for the design and evaluation of auction protocols for Grid systems. With these
features, it is possible to model and evaluate the scheduling of jobs on Grid re-
sources and the impact of varying allocation policies. Similar to other simulators,
GridSim enables the design and modelling of the resource layer.

In this work, we leverage the existing features of GridSim and provide a ser-
vice framework that enables the modelling and evaluation of service provisioning
policies, resource allocation policies and multiple economic mechanisms for ser-
vice negotiation and resource management. GridSim, along with the extensions
described here, provides means for evaluating autonomic computing systems,
utility computing environments and utility Grids.

3 A Service Framework for GridSim

GridSim [11] is a discrete event simulator built on top of SimJava2 simulation
package. A simulation in GridSim comprises of GridSim entities that communi-
cate with one another by scheduling simulation events. Applications are mod-
elled as jobs that are executed on Grid resources. A Gridlet represents a job
and has parameters like job length expressed in Millions of Instructions (MIs),
amount of CPUs required, among others. It is possible to model Grid resources
of varying configurations, where the processing capability of the resource’s CPUs
is expressed in Millions of Instructions Per Second (MIPS). GridSim provides
default resource allocation policies (e.g. space-shared, time-shared and space-
shared supporting advance reservations), but the user can develop his own.

GridSim provides a hierarchical Grid Information Service (GIS) that can
comprise of multiple regional GISs. At the start of the simulation, a Grid resource
registers itself with a regional GIS. By default the Grid resource registers only
its resource ID and indicates whether it supports advance reservation; however,
the user can specify additional information to be provided to the GIS.

Based on the utility computing scenario described in Section 2, we design
the framework considering two distinct stages: (i) the negotiation for and allo-
cation of the resources to host services, and the negotiation for services and the



required QoS; and (ii) the actual utilisation of the services and resources. The
framework provides means for modelling service registries and discovery, service
and resource negotiation as well as means for measuring the resource utilisation
imposed by the services’ workloads. A provider in this scenario has two policies:
one that defines how a service is provisioned and one that defines how resources
are allocated to a service. The allocations may change according to the service
workloads.

Fig. 2 demonstrates the relationship between the main classes of the frame-
work. The class Provider is a GridSim entity that implements the basic behaviour
of a provider. A provider has characteristics represented by ProviderCharacter-
istics. The class ProviderCharacteristics contains a list of Services offered by the
provider and other attributes like time zone, and the provisioning and acquisition
policies utilised. Service corresponds to a service offered by the provider and has
ServiceAttributes and a ServiceRequirementList. At the start of the simulation,
the provider registers itself and the attributes of her services with a regional
Grid Service Registry (GSR). ServiceAttributes include information like service
cost, name and type. We implement service attributes as a distinct class for the
sake of performance and minimisation of simulation events. ServiceRequirements
correspond to atomic services or specific resources required to deliver the service
to clients. For example, a provider may offer a service, but does not allocate
resources to it until the service is required.

RegionalGSRServiceAttributes

Service
ServiceList ProviderCharacteristics

Provider ServiceRequester

ServiceRequest

+requestService(in ...)

+queryRequestStatus(in ...)

+cancelRequest(in ...)

+notifiedByAcquisitionPolicy(in ...)

ProvisioningPolicy

+notifiedByProvisioningPolicy(in ...)

AcquisitionPolicy

«interface»

NegotiationPolicy

SimpleProvisioningPolicy SimpleAcquisitionPolicy

Sends

request

Maintains

Registers at

ServiceRequirementList

Fig. 2. Main classes of the framework.

The Provider can engage in a market with clients for negotiating its resources.
It can also participate in different markets with different mechanisms for negoti-
ating and providing the resources necessary to host the services and satisfy the
requests for a service. Both ProvisioningPolicy and AcquisitionPolicy implement
the NegotiationPolicy interface. NegotiationPolicy defines the methods necessary
to handle negotiations for service provisioning or resource allocation based on
WS-Agreement. ProvisioningPolicy defines how a service is provisioned while
the AcquisitionPolicy specifies the resource allocation. In other words, the Pro-
visioningPolicy defines how the provider manages the negotiation with clients



for service provisioning and how it handles the resource requests. Acquisition-
Policy specifies the provider’s behaviour in negotiating with other providers for
accessing the required services or resources. These services may be needed for
composite services and the resources are required to host service applications. In
many instances, provisioning and acquisition policies have to be synchronised or
informed about one another decisions, as demonstrated by Grit et al. [12]. We
provide methods that allow the policies to be synchronised.

Two examples of provisioning and acquisition policies are provided. In Sim-
pleProvisioningPolicy, the provider accepts requests while the maximum number
of instances for the service is not achieved. SimpleAcquisitionPolicy selects the
first resource from the provider’s resource pool to deal with the workload gener-
ated by the service requests. Although the Provider class can be extended, it is
not necessary since it is possible to define different behaviours for a provider by
extending the ProvisioningPolicy and AcquisitionPolicy classes to provide the
strategies required.

The ServiceRequester class is a GridSim entity that queries services at a GSR
and makes requests to providers. These queries can be performed by passing a
filter to the GSR, which corresponds to specifying the parameters for a query.
For example, the service requester can pass an object whose class extends Ser-
viceFilter to select all the ServiceAttributes with a given service type and name.
The GSR uses the filter to select and return a list of ServiceAttributes that match
the given criteria.

A request for a service accepted by a provider generates a workload. The
workload is composed of items that can be either requests for atomic services
or ServiceGridlets that are sent to the resources allocated to the service. The
ServiceGridlet class extends Gridlet by specifying additional parameters such as
memory and storage required to fulfil the request. The values of these parameters
for a service request can be estimated through profiling techniques, such as those
described by Urgaonkar et al. [13], where a service application is examined in
isolation and its workload is obtained by analysing the use of resources such as
memory, CPU and disk. By following this model, it is possible to analyse the
impact of different provisioning and acquisition decisions on resource utilisation.

4 Modelling the Catallaxy Scenario with GridSim

The CATNETS project investigates the use of an economic model, termed Catal-
laxy, for service negotiation and resource allocation in ALNs, such as Grids and
P2P networks. Catallaxy is a decentralised self-organising economic model de-
rived from Hayek’s concept of spontaneous order [14]. The Catallaxy is based on
the self-interested actions of participants, who try to maximise their own utility
under incomplete information and bounded rationality. The goal of Catallaxy is
to achieve a state of coordinated actions, through the bartering and communica-
tion of participants, to achieve a common goal that no single user has planned.
Hayek’s Catallaxy is the result of descriptive and qualitative research about eco-
nomic decision-making of human participants. Its results are taken to construct
ALN markets with software participants who reason about economic decisions
using artificial intelligence.



The interdependencies between services and resources existing in ALNs are
separated by creating two interrelated markets: a resource market for trading of
computational and data resources; and a service market for trading services. This
separation allows instances of a service to be hosted on different resources [15].
Fig. 3 shows the abstract model adopted by CATNETS. A Complex Service
(CS) is a composite service, like a workflow, that requires the execution of other
interdependent services, termed Basic Services (BSs). A CS is the entry point for
the application layer network. The traded products on the service market, the
BSs, are completely standardised and have a single attribute name. The name
is a unique identifier whose intended semantics is shared among all complex
service providers. Multiple instances of the same BS can co-exist in the ALN.
For example, two or more basic service providers are allowed to provide a specific
BS. The service market is used by Complex Service Providers (CSPs) to allocate

Resource
Provider (RP)

Resource
Provider (RP)

Service

Market

Resource

Market

Grid Service
Registry (GSR)

Grid Service
Registry (GSR)

Complex
Service (CS)

query

query

query

negotiate negotiate

register
register

Basic
Service (BS)

Basic
Service (BS)Application

Fig. 3. The Catallaxy market model.

BSs from Basic Service Providers (BSPs). BSPs are registered in a GSR. A CSP
queries a GSR to receive a list of required trading partners (BSPs) able to provide
the BS required. This list is ranked according to the BS offered price. The best BS
offer is selected for the succeeding bargaining process. This discovery process is
modelled using GSRs and discovery process offered by the simulation framework.

After a successful negotiation in the service market, BSPs negotiate with
Resource Providers (RPs) for the resources necessary to host services and serve
the service requests. RPs utilise the existing resource management systems to
allocate the necessary resources. RP offer resources in Resource Bundles (RBs). A
resource bundle is described by a set of pairs of resource type and quantity. Every
BS has an associated resource bundle. The bundle defines the type and quantity
of resources needed for provisioning that service. In the CATNETS scenario,
the resource bundle required for a BS is predefined for the sake of simplicity. In
general, the model allows the use of any BS to resource bundle mapping function.
In the resource market, the allocation process follows the service market. First,
a BSP queries for RPs which are able to provide the specified resource bundle
and ranks the received list of RPs according to the offered price. Second, the
bargaining for the resource bundle is carried out. If the resource negotiation ends
successfully, the BS is executed on the contracted resources from a RP.

To realise these two markets in GridSim, we implement provisioning and ac-
quisition policies for the three kinds of providers (i.e. CSPs, BSPs and RPs). The



providers differ in terms of the policies used for service and resource provision-
ing and acquisition. The execution of a market participant’s policy for acquiring
services or resources (i.e. AcquisitionPolicy) is shown in Algorithm. 1 and that
of a market participant’s policy for service provisioning (i.e. ProvisioningPol-
icy) is depicted in Algorithm 2. The most important part of the implemented

Algorithm 1 Pseudo-code of the execution of an acquisition policy.
1: loop
2: event ← wait for an event
3: if event = message from provisioning policy then
4: proposals ← ∅
5: request accepted ← the request ∈ event
6: CFP ← create Call For Proposal (CFP) for request accepted
7: send CFP
8: proposals ← collect the proposals
9: best ← select best proposal ∈ proposals
10: start bargaining process
11: outcome ← result of the bargaining process
12: if outcome = success then
13: inform other participants about the success
14: end if
15: apply learning algorithm
16: notify provisioning policy about outcome
17: end if
18: if event = learning message then
19: treat message received
20: apply learning algorithm
21: end if
22: end loop

Algorithm 2 Pseudo-code of a provisioning policy.
1: loop
2: event ← wait for an event
3: if event = Call For Proposal then
4: CFP ← get the Call For Proposal (CFP) ∈ event
5: proposal ← formulate proposal for CFP
6: reserve the resources
7: send proposal
8: end if
9: if event = bargaining then
10: start bargaining process
11: outcome ← result of bargaining process
12: if outcome = success then
13: notify acquisition policy
14: inform other participants about the success
15: else
16: release resources
17: end if
18: apply learning algorithm
19: end if
20: if event = reject proposal then
21: release the resources
22: end if
23: if event = learning message then
24: treat message received
25: apply learning algorithm
26: end if
27: end loop

policies is the utilised bidding strategy. This includes what a provider bids. The
bid denotes the provider’s valuation and reservation prices, i.e. the maximum
price which an agent is willing to pay for the service and the minimum price an



agent has for selling a BS or a RB respectively. The generation of the valuation
is influenced by external factors such as the market price and the learning algo-
rithm. For the formal model of the implemented strategy we refer to the work
by Reinicke et al. [16].

The proposed realisation for the CATNETS markets is the usage of a bilat-
eral negotiation protocol for exchanging bids in a point-to-point communication.
Initially, both trading partners define a reservation price that reflects their esti-
mation of the value of the good. For a buyer, this is the maximum price; for a
seller it is a minimum price. The start price represents the negotiation starting
point. By subsequent concessions, the opponents move closer to a compromise
and a possible contract. Each opponent tries to maximise its own utility, which
is the difference between the price of purchase and the reservation price. Thus,
the buyer’s and seller’s policies converge to a trade-off point in an iterative way
using the exchange of offers and counter-offers and successive concessions.

In the implementation in GridSim, CSs and BSs are modelled as Services.
The service requirements of a CS define the BSs that are needed to deliver the
CS. The service requirements of a BS define a minimum RB required to host the
BS. The requirements of a BS j are represented by BSRj = (uj , pj , yj ,mj , sj),
where uj is the number of resources required; pj represents the number of CPUs
in each resource; yj is the speed of the processors in MIPS; mj is the amount of
memory per resource; and sj represents the storage capacity required.

A RP has a resource pool within which it creates Application Environments
(AEs) with the resource configuration required by a BS. A RB corresponds to the
resources offered by the RP. A RB i is represented by RBi = (ui, pi, yi,mi, si),
where ui is the number of resources in the bundle; pi represents the number
of CPUs in each resource; yi is the speed of the processors in MIPS; mi is
the amount of memory per resource; and si represents the storage capacity per
resource. A RP registers the RB with the GSR, which is viewed as a service by
the BSP. That is, the RP provides a service that enables the BSP to acquire
resources.

The negotiation for the resources needed by the BS starts after the negotia-
tion for a BS is complete. The BSP searches for RPs that can provide a RB with
the minimum amount of resources required. The BSP then starts the negotiation
by sending a Call For Proposal (CFP) to the selected RPs. The BSP bargains
with the RP that offers the best proposal. When the bargaining process ends,
the RP allocates its resources to host the BS. Although a RP can divide its
resource pool in various ways and change the allocations of AEs over time, in
the CATNETS implementation, we consider that they are pre-determined and
do not change. The strategy used by a RP when it receives a CFP from a BSP
during the negotiation of resources for a BS is summarised in Algorithm 3.

5 Performance Evaluation

We present experimental results that demonstrate how GridSim with the exten-
sions discussed in this work can be used to model and evaluate service provi-
sioning and resource allocation policies for service-oriented Grids and autonomic



Algorithm 3 RP’s strategy upon the arrival of a Call For Proposal (CFP) j.
1: BSRj ← get required resource bundle from the CFPj

2: RBi ← the resource bundle advertised
3: selected resources ← ∅
4: booking id ← 0
5: for all resource Ri ∈ RBi do
6: if Ri is not allocated then
7: if pj ≤ pi and yj ≤ yi and mj ≤ mi and sj ≤ si then
8: selected resources ← selected resources

⋃
Ri

9: end if
10: end if
11: if selected resources = uj then
12: booking id ← book(selected resources)
13: break for
14: end if
15: end for
16: if booking id = 0 then
17: proposal ← create proposal(selected resources)
18: send proposal
19: else
20: reject CFPj

21: end if

utility computing environments. The experiments particularly measure how the
Catallaxy model, built on top of the discussed framework, coordinates the use of
services and resources. We evaluate the allocation rate by identifying the number
of service requests that are satisfied and the overhead imposed by the service
and resource negotiations.

5.1 Experimental Scenario

We consider an environment in which RPs provide resource bundles and BSs
require a particular resource bundle for a given time slot to host the service and
execute the service workload. The experiments have been carried out considering
a CS termed Workflow Service (WFS) that requires two BSs, namely Process-
ing Service (PS) and Storage Service (SS). These two BSs, in turn, require a
Processing Bundle (PB) and a Storage Bundle (SB) respectively. PB has the
following configuration: (p = 2, y = 1500MIPS, m = 1GB and s = 2GB), while
SB is given by: (p = 1, y = 1500MIPS,m = 2GB and s = 4GB).

We perform our experiments with varying numbers of RPs, BSPs and CSPs.
The parameters used in the experiments are shown in Table 1. The values for PS
Request Length (PSRL) and SS Request Length (SSRL) are given by WSRL/2
because we consider that WFS first requires processing and further stores the
results of the processing activity. For simulating the workload of PS and SS and
obtaining the final time of the service utilisation, we consider a simple approach.
For example, the workload generated by an invocation j of PS at RP i is given
in MIs by: pj ∗ yj ∗PSRLj where pj is the number of processors required by the
PS, yj is the processor speed in MIPS and PSRLj is PS request length.

Table 1 summarises the experiments performed and the values used for the
simulation of the service application in GridSim using the Catallaxy economic
model and the presented service framework. The parameters TBWS, WSRL,
INSIZE and OUTSIZE use uniform distributions. In addition, we consider that
the BSPs are able to provide and negotiate for one BS at a time.



Table 1. Description of the parameters Used in the Experiments.

Parameter Description Acronym Exp. 1 Exp. 2 Exp. 3 Exp. 4

Number of Providers of Workflow Services 10 20 50 50
Number of Providers of Processing Basic Services 10 20 50 50
Number of Providers of Storage Basic Services 10 20 50 50
Number of Providers of Processing Resource Bundles 10 20 50 20
Number of Providers of Storage Resource Bundles 10 20 50 20
Number of Service Instances Per WFS Provider SI 40
Number of Resource Bundles Per Resource Provider RU 1
Number of Requests to Workflow Service WSR 1000
Time between arrivals of WFS requests TBWS 0-120s
WFS Request Length WSRL 30-60s
PS Request Length PSRL WSRL/2
SS Request Length SSRL WSRL/2
Input File Size INSIZE 30-50KB
Output File Size OUTSIZE 100-200KB

5.2 Experimental Results
Fig. 4(a) shows the allocation rate of workflow service requests in the different
experiments. The allocation rate is above 96% in all experiments. However, in
Experiment 3 the allocation rate is lower than in Experiment 4, even though
more resource providers are available. The reason for such behaviour is that
a provider reserves its services or resources when it receives a CFP. Once an
announcement is sent by the provider who initiated the negotiation, the providers
that have not been selected release their services or resources. As the number of
providers increase, more messages are sent, the negotiations take more time and
the resources are kept reserved for a longer time. In Experiment 4, we reduce
the number of resource providers and the allocation rate increases.

We then evaluate the impact of the negotiations on the service provisioning
process. The experiments measure the amount of time spent on negotiation for
a BS. Fig. 4(b) shows the time spent in different scenarios. We observe that the
time spent is highly dependent on the initial timeout during which the negotiator
waits for proposals, which in this case is 30 seconds (15 seconds in negotiation
for the BS and 15 seconds in negotiation for the resource). We thus omit this
30 second interval from the results presented in the figure. In the scenarios
evaluated, we consider that users and service providers are in different networks
connected through a network link with a bandwidth of 1Mbps while service
providers and resource providers are connected through another network link
with a bandwidth of 1Mbps. Both links present a latency of 50 milliseconds,
which we consider to be representative of the latency in many wide area networks.
The time required to send proposals and to bargain to achieve the final price
is generally smaller than 10 seconds. The initial timeout can be reduced if the
initial negotiator knows how many providers have been contacted and how many
messages should be received. However, we envision a scenario in which a P2P
network is used to broadcast calls for proposals and the negotiator does not
know exactly how many providers will receive the proposals and send a reply.

6 Conclusion and Future Work

This paper describes a model for the simulation of service-oriented Grid appli-
cations to allow the decoupling of service negotiation and resource management



Allocation Rate of Workflow Service Requests

94%

95%

96%

97%

98%

99%

100%

Exp. 1 Exp. 2 Exp. 3 Exp. 4

A
ll
o

c
a

ti
o

n
ra

te

Impact of Catallactic Negotiations on the

Service Provision Time

0

2

4

6

8

10

12

14

16

Exp. 1 Exp. 2 Exp. 3 Exp. 4

T
im

e
in

s
e

c
o

n
d

s

(a) (b)

Fig. 4. (a)Allocation rate of WFS requests. (b)Time taken for a BS negotiation.

into two distinct layers. By decoupling these, it is possible to model and evalu-
ate different strategies for both service provisioning and resource allocation. The
model also enables the simulation and evaluation of policies for negotiation of
SLAs for service usage and the evaluation of centralised and decentralised eco-
nomic models. We present experimental results that demonstrate the use of the
framework for modelling and evaluation of a decentralised economic bargaining
mechanism, the Catallaxy, for service and resource negotiation.

For future work, we would like to evaluate the suitability of the framework for
modelling large-scale scenarios and improve the acquisition policies to support
advance reservation and co-allocation of Grid resources. In addition, we would
like to evaluate the economic models considering dynamic environments with
varying failure probabilities for resources. We will consider acquiring data from
existing Grid test beds for determining the failure probability of Grid resources
and include these in the Grid simulator.

In addition, we would like to incorporate models for what can be called elastic
containers or elastic VMs. In these models, the allocation policy of a utility data
centre, for instance, may decide to expand the amount of memory, storage and
CPU of VMs in an AE according to the service workload. We would like to
incorporate these VM models and enable the changes in the configurations of
VMs on the fly. These features can enable the evaluation of varying provisioning
policies.

Acknowledgments

We thank Chee Shin Yeo, Krishna Nadiminti, James Broberg and Al-Mukaddim
Khan Pathan from the University of Melbourne for their assistance in improving
the quality of this paper and for sharing their thoughts on the topic. This work
is supported by the European Union, DEST and ARC Project grants. Marcos’
PhD research is partially supported by National ICT Australia (NICTA).

References

1. Foster, I.: Service-oriented science. Science 308(5723) (2005) 814–817
2. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)

(2003) 41–50



3. Almeida, J., Almeida, V., Ardagna, D., Francalanci, C., Trubian, M.: Resource
management in the autonomic service-oriented architecture. In: 3rd IEEE Interna-
tional Conference on Autonomic Computing (ICAC 2006), Dublin, Ireland (2006)
84–92

4. Bennani, M.N., Menascé, D.A.: Resource allocation for autonomic data centers
using analytic performance models. In: 2nd IEEE International Conference on
Autonomic Computing (ICAC 2005), Seattle, Washington (2005) 229–240

5. Walsh, W.E., Tesauro, G., Kephart, J.O., Das, R.: Utility functions in autonomic
systems. In: International Conference on Autonomic Computing (ICAC 2004),
New York, NY (2004) 70–77

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R.,
Pratt, I., Warfield, A.: Xen and the art of virtualization. In: 19th ACM Symposium
on Operating Systems Principles (SOSP ’03), New York, NY, USA, ACM Press
(2003) 164–177

7. Low, C., Byde, A.: Market-based approaches to utility computing. Technical
Report HPL-2006-23, Internet Systems and Storage Laboratory, Hewlett Packard
Laboratories Bristol (2006)

8. Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P., Stockinger, K., Zini, F.:
Simulation of dynamic grid replication strategies in optorsim. In: 3rd International
Workshop on Grid Computing (GRID 2002), London, UK, Springer-Verlag (2002)
46–57

9. Casanova, H.: Simgrid: A toolkit for the simulation of application scheduling.
In: 1st IEEE/ACM International Symposium on Cluster Computing and the Grid
(CCGrid 2001), Brisbane, Australia (2001) 430–437

10. Song, H., Liu, X., Jakobsen, D., Bhagwan, R., Zhang, X., Taura, K., Chien, A.:
The microgrid: a scientific tool for modeling computational grids. In: ACM/IEEE
Supercomputing 2000 Conference (SC’00). (2000) 53–53

11. Buyya, R., Murshed, M.: Gridsim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for grid computing. Concurrency
and Computation: Practice and Experience (CPE) 14(13-15) (2002) 11751220

12. Grit, L., Inwin, D., Yumerefendi, A., Chase, J.: Virtual machine hosting for net-
worked clusters: Building the foundations for ’autonomic’ orchestration. In: 1st
International Workshop on Virtualization Technology in Distributed Computing
(VTDC 2006), Tampa, Florida (2006)

13. Urgaonkar, B., Roscoe, P.S.T.: Resource overbooking and application profiling in
shared hosting platforms. In: 5th Symposium on Operating Systems Design and
Implementation, Boston, Massachusetts (2002) 239–254

14. Hayek, F.A.V.: The Collected Works of F.A. Hayek. University of Chicago Press
(1989)

15. Eymann, T., Ardaiz, O., Catalano, M., Chacin, P., Chao, I., Freitag, F., Gallegati,
M., Giulioni, G., Joita, L., Navarro, L., Neumann, D.G., Rana, O., Reinicke, M.,
Schiaffino, R.C., Schnizler, B., Streitberger, W., Veit, D., Zini, F.: Catallaxy-based
grid markets. International Journal on Multiagent and Grid Systems, Special Issue
on Smart Grid Technologies & Market Models 1(4) (2005) 297–307

16. Reinicke, M., Streitberger, W., Eymann, T.: Scalability analysis of matchmakers
in self-optimizing computing networks. Journal of Autonomic and Trusted Com-
puting (JoATC) (2005)


