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Abstract

An important feature of most cloud computing solutions is auto-scaling, an operation that enables dynamic changes
on resource capacity. Auto-scaling algorithms generally take into account aspects such as system load and response
time to determine when and by how much a resource pool capacity should be extended or shrunk. In this article,
we propose a scheduling algorithm and auto-scaling triggering strategies that explore user patience, a metric that
estimates the perception end-users have from the Quality of Service (QoS) delivered by a service provider based on
the ratio between expected and actual response times for each request. The proposed strategies help reduce costs with
resource allocation while maintaining perceived QoS at adequate levels. Results show reductions on resource-hour
consumption by up to approximately 9% compared to traditional approaches.

Keywords: Cloud computing, auto-scaling, resource management, scheduling

1. Introduction

Cloud computing has become a popular model for
hosting enterprise and backend systems that provide ser-
vices to end-users via Web browsers and mobile devices
[1, 2]. In this context, a typical scenario often comprises
a provider of computing and storage infrastructure, gen-
erally termed as Infrastructure as a Service (IaaS) or
simply a cloud provider; a service provider who offers a
web-based service that can be deployed on Virtual Ma-
chines (VMs) hosted on the cloud; and the clients, or
end-users, of such a service.

In this work, we investigate challenges faced by the
service providers who compose their resource pools
by allocating machines from cloud providers. Meet-
ing end-users expectations is crucial for the service
provider’s business, and in the context of Web applica-
tions, these expectations typically refer to short requests
response times. Simultaneously, there are costs asso-
ciated with resource allocation, so resource pools with
low utilisation are economically undesired. Moreover,
clients demands are uncertain and fluctuate over time,
so the problem of resource allocation faced by service
providers is clearly non-trivial.

Elasticity, a selling point of cloud solutions, enables
service providers to modify the size of resource pools
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in near real-time via auto-scaling strategies, allowing
hence for reactions to fluctuations on clients’ demand.
Current strategies typically monitor and predict values
of target system metrics, such as response time and util-
isation level of relevant resources (e.g., CPU, memory,
and network bandwidth), and employ rule-based sys-
tems to trigger auto-scaling operations whenever prede-
fined thresholds are violated. The parameters employed
by these strategies do not allow them to explore hetero-
geneity of expected response times and of tolerance to
delays that end-users have towards service providers. In
combination with actual response times, these two ele-
ments define the perception end-users have from a ser-
vice QoS, which we will refer to as user patience.

Previous work in other domains has shown that end-
users can present heterogeneous patience levels depend-
ing on their context [3]. Moreover, in a society where
human attention is increasingly becoming scarce, and
where users perform multiple concurrent activities [4]1

and use multiple devices [5]2, response time might not
be the sole element defining the perceptions end-users
have from a service’s QoS. Our previous work inves-
tigated how application instrumentation [6, 7, 8], and
end-user context and profiling [9] could be used in the

1Ofcom reports that up to 53% of UK adults media multi-task
while watching TV.

2Accenture’s study shows users expect other devices to augment
content shown on TV.
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Figure 1: Service provision model and auto-scaling scenario considered in this work.

collection of honest signals determining how clients in-
teract with a service provider and what their levels of
patience are when making requests.

The present work investigates how patience can be
explored by auto-scaling strategies. Compared to our
previous work [8], in addition to considering provision-
ing time, this article makes the following contributions:

• A scheduling algorithm and a patience-based auto-
scaling triggering strategy for a service provider to
minimise the number of resources allocated from
a cloud provider, applicable to scenarios where
the maximum number of available resources is un-
bounded (§ 3);

• Experiments with bounded and unbounded num-
bers of resources available to service providers that
show reductions of up to nearly 9% on resource-
hour consumption compared to traditional auto-
scaling strategies (§ 4).

2. Problem Description

In this section we describe the scenarios investigated
in this work, present the assumptions regarding capacity
limitations on the pool of resources offered by the cloud
provider, and explain the elements of client behaviour
which are taken into account by our algorithms.

Figure 1 depicts the service hosting model and
the main steps of auto-scaling operations. A service
provider allocates a pool of VMs from a cloud provider

to deploy its service, which is then accessed by end-
users. The service provider and/or cloud provider peri-
odically monitors the status of the pool, thus computing
metrics such as resource utilisation. A metric lying out-
side certain lower and upper limits may trigger a scale
in/out operation. A step size — the number of VMs to
be allocated or released — is computed before a change
to the capacity of the resource pool is requested.

Resources are pairwise indistinguishable, that is, they
are VMs which have the same cost and performance
characteristics. We also consider provisioning time;
namely, after triggering the activation of resources, a
service provider must wait for non-negligible time to
use them. Finally, the scenarios either have a maximum
number of resources that can be allocated (bounded) or
do not have limitations of this nature (unbounded); these
two scenarios are considered because they pose differ-
ent levels of stress on resource utilisation.

We take into account that resources are paid only for
the periods in which they were allocated in a per-minute
billing model. This assumption is not unrealistic, as
providers such as Microsoft Azure offer this type of ser-
vice. Consequently, the strategies proposed in this arti-
cle may allocate and deallocate a given resource several
times within one hour in order to improve utilisation.

This work also considers short tasks whose execution
times are all equal and in the order of a few seconds,
reflecting hence scenarios typically faced by providers
of web services. Nevertheless, the concepts and results
can, without any loss of generality, be reproduced in
scenarios with either shorter or longer tasks.
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Figure 2: Prospect theory modelling variations of user patience as a
function of QoS [10]; where QoS can represent expectations on, for
instance, request response time and jitter.

We assume that expectations on response time may
vary across individuals, a realistic assumption in cer-
tain practical settings; for example, whereas end-users
expect to get results from Web searches in a couple
of seconds at maximum, clients performing large-scale
graph mining operations, which can take from minutes
to hours, tend to be more tolerant.

Differences between expected and actual response
times for submitted requests have an impact on users’
patience (either positive or negative) whose weight de-
creases over time. More precisely, changes on the pa-
tience level of an end-user take place after the execution
of each request and are described by a function applied
to the ratio between expected and actual response times.
Based on Prospect Theory [10], we assume that the neg-
ative impact of delays on users’ patience exceeds the
benefits of fast responses (see Figure 2).

The service provider periodically evaluates the sys-
tem utilisation and/or user patience and decides on
whether the capacity of its resource pool should be
expanded (shrunk) by requesting (releasing) resources
from (to) the cloud. The questions we therefore seek to
address are: (i) how to determine critical times when
auto-scaling is necessary or avoidable by exploiting
information on users’ patience; (ii) how to determine
the number of resources to be allocated or released;
and (iii) how strategies behave under scenarios with
and without restrictions on the maximum number of re-
sources that can be allocated.

3. Algorithms for Auto-Scaling and Scheduling

This section starts with a mathematical description of
the challenges a service provider faces to set its resource
pool capacity. Based on this formalisation, we introduce
the main contributions of this work: auto-scaling strate-
gies and a scheduling algorithm based on user patience.
Table 1 summarises the employed notation.

3.1. Mathematical Description
We consider a discrete-time state-space model where

time-related values are integers in T ⊆ N representing
seconds. There is a set U of end-users or clients and a
sequence J of incoming requests to a service; the end-
user who submitted request j ∈ J is denoted by u( j).

The service provider allocates up to m resources from
the cloud provider in order to host its service and han-
dle end-users’ requests, and its resource pool capacity
at time t ∈ T is denoted by mt for each t ∈ T ; recall
that, with auto-scaling, mt may be different from mt′ for
t , t′. We consider that mt ≥ b, where b ∈ N is defined
a priori by the service provider; setting such a lower
bound is a common practice in the industry to prevent
resource shortage under low, yet bursty load. Moreover,
wt represents the number of resources in use to han-
dle requests at time t; note that wt < mt indicates that
mt − wt active resources are not being used by the ser-
vice provider.

A request occupies one resource for ρ seconds in or-
der to be processed, ρ ∈ N, and that request decom-
position (i.e., execution of sub-parts in different ma-
chines or times) and preemption are forbidden. Due to
the amount of time spent with queueing and schedul-
ing operations, though, response times are almost al-
ways higher than ρ. Based on previous interactions with
the service provider, the response time that end-user u
expects for each submitted request is given by ρ × βu,
where βu ∈ R is a multiplicative factor larger or equal
than 1; we assume that βu does not change over time.
The actual response time for request j is denoted by r j.

End-user u’s patience level at instant t is denoted by
φt,u ∈ R+. If φt,u is below a certain threshold τu ∈ [0, 1),
we say that u is unhappy. Based on the ideas introduced
by Prospect Theory — where the sense of losing an op-
portunity transcends the feeling of gaining it — φt,u

behaves as follows. First, for every request j, u( j)’s re-
action to response time r j is given by

x j =
ρ × βu( j)

r j
,

where x j > 1 indicates that r j was smaller than ex-
pected, thus making u( j) positively “surprised”; x j < 1
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accounts for cases where the r j was greater, making u( j)
“disappointed”; and x j = 1 when equality between ex-
pected and actual response times hold. Considering the
different user reactions suggested by Prospect Theory,
we assume in this work that patience level φt,u changes
according to x j as follows:

φt,u =

α1,uφt−1,u + (1 − α1,u)x j, if x j > 1;
α2,uφt−1,u + (1 − α2,u)x j, otherwise,

where 0 ≤ α1,u, α2,u ≤ 1. Exponential smoothing is
used in both cases to update the patience level. In order
to make the immediate impact of slower response times
higher than that of faster responses, we have α1,u > α2,u;
moreover, different end-users may have different values
of α1,u and α2,u. In summary, each end-user u is de-
scribed by a tuple (βu, α1,u, α2,u, τu, φ0,u).

3.2. Auto-Scaling and Scheduling Strategies
In order to set an auto-scaling strategy, a service

provider needs to define when an scaling operation
should take place and to select adequate step sizes,
which are the number of resources by which the re-
source pool capacity should extend or shrink.

Typically, resource utilisation is used to trigger scale-
in and scale-out operations. Resource utilisation at time
t, denoted by υt, is the ratio between the number wt

of resource hours effectively used to handle requests
and the number mt of resource hours allocated from the
cloud (i.e., idle resources are not considered). The ser-
vice provider sets parameters H and L, 0 ≤ L ≤ H ≤ 1,
indicating utilisation thresholds according to which re-
sources are activated and deactivated, respectively. Ob-
serve that, irrespective of scale-in decisions, though, re-
source pool capacity will never be inferior to b.

Ideally, resource pool capacity is modified before
utilisation reaches undesired levels. For this reason, ser-
vice providers typically rely on predictions of resource
utilisation. In this work, this estimation is based on the
measurements performed over the past i measurement
intervals for some i ∈ N. Namely, after measuring υt

at time t, weighted exponential smoothing is used to
predict the utilisation for step t + 1. If the past v ≤ i
measurements (i.e., υt−v, υt−v+1, . . . , υt) and the forecast
utilisation are below (above) the lower (upper) thresh-
old L (H), the scheduler triggers a scale-in (scale-out)
operation.

We propose the following auto-scaling strategies:

• Utilisation Trigger (UT): a strategy that uses sys-
tem utilisation and employs a formula to iden-
tify an upper bound on step sizes for activat-
ing/releasing resource capacity;

Table 1: Summary of the notation used in this article.

Symbol Description

T Discrete-time state-space model

U Set of end-users of the service

J Sequence of requests made by end-users

u( j) End-user who submitted request j

m Service provider’s maximum resource pool
capacity

mt
Service provider’s resource pool capacity at
time t

b Service provider’s minimum resource pool
capacity, set a priori

wt Number of resources in use at time t

ρ Processing time of a request

βu
Factor that determines the expected response
time end-user u has after submitting requests

r j Actual response time for request j

φt,u End-user u’s patience level at time t

x j End-user u( j)’s reaction to response time r j

α1,u and α1,u
Parameters that define how the patience level of
end-user u varies over time

υt Resource utilisation at time t

L Lower bound for resource utilisation

H Upper bound for resource utilisation

i Number of intervals for predicting resource
utilisation

λ Percentage of m which equals step size

s Resource step size (i.e., number of resources to
activate/deactivate in an auto-scaling operation)

st Resource step size at time t

γ
It determines the aggressiveness of auto-scaling
strategies when computing the step size st

k j
Number of responses with bad QoS u( j) will
accept before having patience limit exceeded

K̂t
Average value of k j for all the requests in the
service (either enqueued or in execution)

τu( j)
Maximum response time a user u is willing to
endure after receiving a response for j

at
Number of end-users accessing the service at
time t

Lt
Lower bound derived for step sizes in scenarios
where m = ∞

Ut
Upper bound derived for step sizes in scenarios
where m = ∞

lt System load at time t according to workloads
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• Unbounded-resource-pool Utilisation Trig-
ger (UUT): uses system utilisation and employs a
formula to determine an upper bound and a lower
bound on step sizes for activating/releasing re-
source pool capacity, based on previous work [11];

• Utilisation and Patience Trigger (UPT): extends
the first strategy by using user patience to compute
dynamically a factor for multiplying the step sizes
suggested by the formula;

• Unbounded-resource-pool Utilisation and Pa-
tience Trigger (UUPT): extends the second strat-
egy by using user patience in order to choose dy-
namically a value from the step size interval de-
fined by the formula.

The rest of this section details the main principles of
the auto-scaling strategies and the scheduling algorithm.

3.2.1. Utilisation-based Auto-Scaling
Let λ ∈ [0, 1] be the percentage of m by which the

resource pool extends or shrinks in each auto-scaling
operation, i.e., let s = bλ × mc. When setting utilisation
thresholds L and H and step size s, service providers
want to prevent the occurrence of opposite auto-scaling
operations in consecutive steps. Such events take place
in two situations, which can be avoided if we assume
that wt = wt+1 as we discuss below.

First, we have a scale-out operation taking place at
time t and a scale-in operation taking place at time t + 1
if wt

mt
> H =⇒ wt > Hmt, wt+1

mt+λ×m < L =⇒ wt+1 <
L × (mt + λ × m), and wt ≤ wt+1 hold simultaneously.
This can be avoided if the following inequality holds:

Hmt > L × (mt + λ × m) =⇒

H
L

>
mt + λ × m

mt
=⇒

H
L

> 1 +
λ × m

mt
.

A similar analysis indicates how to avoid scale-in oper-
ations at time t and scale-out operations at t + 1 for any
t ∈ T whenever wt ≥ wt+1. Namely, we want to avoid
wt
mt

< L =⇒ wt < Lmt and wt
mt−λ×m > H =⇒ wt >

H × (mt − λ × m) holding simultaneously; for this, we
need

H
L
> 1 +

λ × m
mt − λ × m

.

Moreover, we have that
λ × m

mt − λ × m
>

λ × m
mt

=⇒

mt > mt − λ × m =⇒

λ × m > 0,

so both inequalities are satisfied if wt = wt+1 and H
L ≥

1 + λ×m
mt−λ×m . As the service provider will keep at least b

machines active, we have that mt−λ×m ≥ b. Therefore,
the parameters have to obey the relation below:

H
L
> 1 +

λ × m
b

.

From the above, one derives an upper bound for the step
size s = λ×m. This value is derived from borderline sce-
narios, though, so it yields step sizes that are too large
in most cases. Therefore, service providers can choose
a multiplicative factor γ ∈ [0, 1] indicating the strat-
egy’s “aggressiveness”; namely, given γ, the step size
will be s × (1 − γ) and s × γ for scale-in and scale-out
operations, respectively.

Utilisation Trigger (UT) is an implementation of the
ideas discussed above; namely, in order to use UT, a ser-
vice provider only needs to set utilisation thresholds L
and H and factor γ. Observe that this strategy is based
solely on utilisation and assumes that m is finite.

When a service provider is not subject to upper
bounds on the number of resources it can allocate (i.e.,
m = ∞), the formulae employed to derived upper
bounds on step sizes used by UT cannot be applied.
Under these circumstances, we employ Unbounded-
resource-pool Utilisation Trigger (UUT), a strategy in-
troduced in our previous work [11] in which the upper
bound on s for scale-out operations is given by

s ≤ mt
υt − L

L
and the lower bound by

s ≥ mt
υt − U

U
,

whereas, for scale-in operations, the upper bound is

s ≤ mt
L − υt

L
and the lower bound is

s ≥ mt
U − υt

U
.

Let Lt and Ut be the lower and upper bounds derived
from the inequalities above at time t, respectively. In
addition to Lt and Ut, UUT is also given an aggressive-
ness factor γ ∈ [0, 1]. Given these parameters, for scale-
in operations the value of st is

st = (1 − γ) × Lt + γ × Ut,

whereas for scale-out operations it is

st = γ × Lt + (1 − γ) × Ut.

More details are provided in previous work [11].
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3.2.2. Patience-based Scheduling and Auto-Scaling
Lowest Patience First (LPF) is a scheduling algorithm

that orders arriving requests based on end-users’ pa-
tience level as follows. If, at instant t, end-user u sub-
mits request j and x j < 1, we have

φt+1,u = α1φt,u + (1 − α1)x j ≥ α1φt,u.

Since

lim
r j→∞

ρ × βu

r j
= 0,

φt+1,u becomes closer to α1φt,u as r j → ∞. Therefore
α1φt,u is a lower bound for φt+1,u, and the accuracy of
this approximation grows as system load (and, conse-
quently, response times) gets larger. Using this bound,
we can estimate the minimum value k j ∈ N for which
φt+k j,u becomes smaller than τu as follows:

α
k j

1 φt,u ≥ τu =⇒

α
k j

1 ≥
τu

φt,u
=⇒

k j ≥ logα1

(
τu

φt,u

)
;

namely, value k j indicates the number of submissions
for which u( j) will tolerate a bad QoS before hav-
ing τu( j) surpassed.

LPF sorts the requests in the scheduling queue ac-
cording to k j (smaller values first). In order to avoid
starvation, k j is set to zero if request j is waiting for a
period of time that is at least twice as large as the current
average response time.

Under UT and UUT γ is fixed, so the service provider
is forced to have the same behaviour (aggressive or
conservative) in each auto-scaling operation. UPT and
UUPT leverage UT and UUT, respectively, by employ-
ing user patience to set dynamically the value of γ.

Let K̂t denote the average value of k j for all the re-
quests in the service provider (either enqueued or in ex-
ecution) at time-step t. Whenever the system decides
that an auto-scaling operation should be performed, a
sequence S containing the last k averages K̂t is created
and has some percentage of its largest and smallest val-
ues removed. From the remaining elements of S , the
system takes the largest value K. Finally, the value of γ
will be 1 − K̂t

K and K̂t
K for scale-out and scale-in opera-

tions, respectively.
Essentially, UPT and UUPT adapt the system be-

haviour according to users’ current average-patience
level. Namely, if K̂t is high, a more aggressive policy
is acceptable. Conversely, if K̂t is low, a conservative
approach could support the improvement of QoS.

4. Evaluation

We conducted extensive computational experiments
in order to investigate the benefits and drawbacks of the
algorithms presented in Section 3. We modelled scenar-
ios where the maximum number of resources can be ei-
ther bounded or unbounded, and evaluated the following
combinations of task scheduling and auto-scaling trig-
gering strategies:

• FIFO+UT or FIFO+UUT: First-In, First-Out
(FIFO) scheduling with auto-scaling considering
only resource utilisation.

• LPF+UT or LPF+UUT: LPF scheduling with
auto-scaling considering only resource utilisation.

• LPF+UPT or LPF+UUPT: LPF scheduling with
auto-scaling considering resource utilisation, and
end-users’ patience to define the resource step size
of scale-out and scale-in operations.

Our comparisons employed the following metrics:

• Percentage of dissatisfactions: percentage of re-
quests j whose response time r j led or kept end-
user u( j)’s patience level below threshold τu( j);

• Percentage of QoS violations: percentage of re-
quests whose response times were longer than the
amount of time expected by their end-users;

• Allocated resource-time: resource capacity—
in machine-seconds—allocated to serve user re-
quests.

• Aggregate request slowdown: consists of the ac-
cumulated sum of all delays suffered by requests
involved in QoS violations as is therefore given by∑

j∈J

max(r j − βu( j) × ρ, 0).

The rest of this section describes the experimental
setup and discusses the obtained results.

4.1. Experimental Setup

A built-in-house discrete-event simulator was used to
evaluate the performance of the proposed strategies. We
crafted two types of workloads with variable hourly-
load over a 24-hour period. The rationale behind these
workloads, depicted in Figure 3, is as follows:
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Figure 3: The workloads considered in this work, where the hourly
load l is employed to determine the number of end-users accessing
the service.

• Normal day: consists of small peaks of utilisa-
tion during the start, middle, and towards the end
of working hours. Outside these intervals, but
still during working hours, the workload remains
around the peak values, whereas outside the work-
ing hours the load decreases significantly.

• Peaky day: consists of tipping workload peaks, a
scenario in corporations where requests need to be
executed only at a few moments of the day.

The workloads are employed to determine the num-
ber of users accessing a service at a given time t. Every
10 seconds, the number at of end-users accessing the
service is adjusted to

at = |U| × (lt + η),

where |U| denotes the maximum number of users who
can be accessing the service at any given moment, 0 ≥
lt ≤ 1 is the load at time t according to the crafted work-
loads (representing hence a fraction of |U|), and η is
uniformly distributed over −0.05 to 0.05 in order to add
a random variation of 5%; the sum lt + η is always set
to the closest value in the interval [0,1]. For instance, if
at time t, |U| = 100, lt = 0.7 and η = 0.05, the num-
ber of users accessing the system and making requests
is at = 75. For intermediate values of t, at = at−1.
Unless otherwise noted, the experiments described here
use |U| = 1, 000.

Requests have processing time ρ of 10 seconds,
whereas end-user’s expected response time for request
j is ρ multiplied by βu( j) ≥ 1; e.g., if βu( j) = 1.3,
the expected response time is 13 seconds. Request
inter-arrival times, or end-users “think time”—amount

of time in seconds separating the arrival of a response
for request j and the submission of a new request by ac-
tive end-user u( j)—is drawn uniformly from 0 to 100
for each request submission, that is, it is not constant
for any end-user. The values of α1 and α2 are given
by 0.2 and 0.1 multiplied by numbers drawn uniformly
for each end-user from [0.9, 1.1], respectively. Finally,
each τu and φu,0 are random numbers drawn uniformly
from [0.45, 0.55] and [0.8, 1.0], respectively. These val-
ues are used by the algorithms employed by the service
provider, so it can be assumed that they have been ob-
tained or estimated based on historical data associated
with each end-user.

We tested bounded scenarios in which maximum re-
source pool capacity was an even value between 162
to 180; in these cases, the initial capacity m0 and the
minimum capacity b are set to 25% of the maximum.
For unbounded scenarios, initial/minimum capacity is
set to 45 resources. The rationale behind these values is
simple. Whereas it is a common practice in the industry
to set a minimum resource capacity for a service, we do
not want this minimum capacity to be large enough to
eclipse the impact of auto-scaling decisions.

The lower and upper target thresholds for resource
utilisation (i.e., L and H) are 40% and 70% respec-
tively, which are default utilisation levels used by exist-
ing auto-scaling services, such as Amazon Elastic Com-
pute Cloud (EC2). Resource utilisation levels are mea-
sured every 60 seconds. The value of γ is set to 0.25 for
strategies UT and UUT under bounded scenarios and to
0.5 under unbounded scenarios, respectively.

Provisioning time in each scale-out operation is mea-
sured in seconds and is drawn from a Normal distribu-
tion with mean 180 and standard deviation 15; sampling
is performed in an aggregate way, that is, a single value
is used by all resources involved in the same operation.
These values were chosen based on existing work that
identified that the mean time required to provision lean
VM instances in certain clouds is often over 100 sec-
onds [12]. Moreover, the fact that in a group of VMs
there are certain VMs that can boot slower and that
the provision of VMs with Web server software stack
takes longer as demonstrated in the existing work, we
added extra 80 seconds. We performed experiments
with higher mean values (up to 10 minutes) and ob-
tained similar conclusions for the proposed techniques
(therefore, due to space constraints, we report only on
results involving provisioning time variable to 180±15).
Deallocation time was not considered in this work be-
cause it is typically much shorter than provisioning time
and its effects can only be observed in scenarios where
utilisation changes abruptly and quickly, which is not
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the case of the workloads considered in this work.
Finally, we simulated the equivalent of 4 days of ac-

tivities of a service provider in order to reduce biases
that single executions could have brought to the final
results.

4.2. Result Analysis

Bounded number of resources. We start discussing
the results of our experiments with scenarios where the
maximum resource pool capacity is bounded. These re-
sults are summarised in Figures 4, 5, 6, 7, 8, and 9.
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Figure 4: Bounded: Percentage of QoS violations for FIFO+UT,
LPF+UT, LPF+UPT on the Normal workload.
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Figure 5: Bounded: Percentage of QoS violations for FIFO+UT,
LPF+UT, LPF+UPT on the Peaky workload.

Figures 4 and 5 present the percentage of requests
whose response times were larger than expected. In
general, LPF+UPT is superior and to FIFO+UT in sce-
narios with 162-170 and worse than FIFO+UT with
172-180 resources, respectively, whereas LPF+UT is
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Figure 6: Bounded: Comparison of resource-time usage for
FIFO+UT, LPF+UT, LPF+UPT on the Normal workload.
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Figure 7: Bounded: Comparison of resource-time usage for
FIFO+UT, LPF+UT, LPF+UPT on the Peaky workload.
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Figure 8: Bounded: Percentage of user dissatisfaction for FIFO+UT,
LPF+UT, LPF+UPT on the Normal workload.

better than both in all scenarios with respect to this met-
ric. Poor results from FIFO+UT are not surprising, as
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Figure 9: Bounded: Percentage of user dissatisfaction for FIFO+UT,
LPF+UT, LPF+UPT on the Peaky workload.

it is completely oblivious to user patience. The compar-
ison between LPF+UT and LPF+UPT is less straight-
forward; LPF+UT leads to fewer QoS violations than
LPF+UPT, but Figures 6 and 7 show that the later com-
pensates this with significant reductions on allocated re-
source time (approximately 9%).

Additionally, results of LPF+UPT on percentage of
QoS violations and on percentage of dissatisfactions for
scenarios with 170-180 resources show the effects of
making γ dynamic. Namely, in scenarios where the
maximum number of resources is large enough to sat-
isfy demand, users’ patience level are more likely to stay
high. Whenever auto-scaling operations have to be per-
formed, the algorithm assigns “aggressive” values to γ
that enforce the allocation (deallocation) of a very small
(large) number of machines in scale-out (scale-in) op-
erations. As a result, response time for a certain num-
ber of requests may be larger than expected in situations
where such delays could have been avoided. However,
the results presented in Figures 8 and 9 for 172-180 re-
sources suggest that it is possible to provide insufficient
QoS for approximately 1-2% of all requests without per-
ceptible damages to user patience in such scenarios (as
illustrated by LPF+UPT in Figures 4 and 5).

Figures 8 and 9 show a clear superiority (i.e., lower
percentages) of LPF+UT and a clear inferiority of
FIFO+UT with respect to end-user dissatisfaction. The
latter phenomenon can be again explained by the fact
that FIFO does not take patience into account. More-
over, differences between LPF+UT and LPF+UPT are
again counterbalanced by differences on the volume of
resource-time usage for each configuration. The results
of scenarios with 174-180 resources are inconclusive,
as the percentage of dissatisfied users in these cases is

insignificant; because queues are almost never formed
in these situations, the scheduling strategies basically
deliver the same solutions and auto-scaling algorithms
have enough time to adapt the resources’ pool.

Finally, the results show that keeping user patience
in satisfactory levels is more challenging for the Peaky
workload. The overall resources demand on both sce-
narios are different, but whereas differences on the
volume of allocated resources are relatively low (ap-
proximately 10%), the percentages of QoS violations
and dissatisfactions differ by a factor of 2. Peaky
workloads model situations where resource demand in-
creases abruptly, and under these circumstances, the
number of QoS violations tend do increase consider-
ably. Therefore, it is natural to expect lower user sat-
isfaction levels in such scenarios.
Unbounded number of resources. We present now re-
sults involving the simulation of scenarios where ser-
vice providers could provision as many resources as
they wished. These results are summarised in Fig-
ures 10, 11, 12.
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Figure 10: Unbounded: Percentage of QoS violations for FIFO+UT,
LPF+UT, LPF+UPT.

As expected, the number of QoS violations is consid-
erably smaller in these scenarios. Figure 10 shows that
the occurrence of such events is extremely rare in both
workloads (< 1%). One can also observe a potentially
statistically negligible, but nevertheless interesting, phe-
nomenon in this figure: all the strategies yielded more
QoS violations in the Normal workload than in Peaky.
Moreover, differences on the percentage of dissatisfac-
tion presented in Figure 12 reinforces this apparent con-
tradiction. The explanation for these results lay in an
observation that was irrelevant in scenarios where QoS
violations take place frequently: although its changes
are more abrupt, Peaky is smoother, in the sense that
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Figure 11: Unbounded: Comparison of resource-time usage for
FIFO+UT, LPF+UT, LPF+UPT.
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Figure 12: Unbounded: Percentage of user dissatisfaction for
FIFO+UT, LPF+UT, LPF+UPT.
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Figure 13: Unbounded: Aggregate request slowdown for FIFO+UT,
LPF+UT, LPF+UPT.

modifications on its upwards/downward orientation are
less frequent than in Normal (6 against 15); QoS vi-

olations are more likely to occur during these shifts,
which justifies the observed difference. Additionally,
Figure 10 shows that FIFO+UT delivered less QoS vio-
lations than the other two strategies for the Peaky work-
load; this happened because patience-aware strategies
focus on the minimization of user dissatisfaction rather
than QoS violations, and sacrificing the latter may be
necessary in order to excel on the first.

Conversely, results presented in Figure 12 suggest
that the impact of QoS violations on end-user patience
on Normal was considerably larger than on Peaky. Di-
rect comparison with Figure 10 suggests that the num-
ber of violations play a major role on this phenomenon,
so we investigated the aggregate request slowdown.

The results are presented in Figure 13 and show
that the values for Peaky and Normal are close; con-
sequently, individual QoS violations typically involved
much larger delays on Peaky than on Normal. From
this, we conclude that having several small delays is
more harmful to user dissatisfaction than a few long
delays. Finally, Figure 11 reinforces the benefit of us-
ing a patience-aware auto-scaling triggering strategy.
Whereas user dissatisfaction levels for all configurations
are basically the same in both workloads, LPF+UPT
consumed 9% less resources than the other strategies.

To evaluate the impact of provisioning time on the
auto-scaling strategies described in this work, we per-
formed an experiment with provisioning time of 10 ± 5
seconds and 10,000 as a maximum number of end-users
— that is, |U| = 10, 000 when computing the number of
users in the system at at time t. The minimum number
of resources, b, was set to 450. This scenario presents
demand peaks that exceed 2,000 VMs. Figure 14 and
Figure 15 summarise the results for allocated-resource
time and percentage of dissatisfactions, respectively.

We can observe that the patterns identified in previ-
ous experiments hold under this last scenario; there is
a reduction in the amount of allocated resource time
resulting into a small increase in the number of re-
quests that suffer from insufficient QoS. Further inves-
tigation revealed that this is the case because, although
resources can be provisioned quickly, LPF delays auto-
scaling operations by exploiting users patience levels,
eventually leading to dissatisfactions as resource utili-
sation and triggering of auto-scaling decisions are taken
at discrete intervals. Although the patience-based auto-
scaling strategy could be made more responsive to vari-
ations in resource utilisation, that would lead to an in-
crease in the cost with infrastructure as resources would
be activated and released more often, and eventually
render the consideration of users’ patience levels in
auto-scaling unusable.
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Figure 14: Unbounded: Comparison of resource-time usage for
FIFO+UT, LPF+UT, LPF+UPT under provisioning time of 10±5 sec-
onds and |U| = 10, 000 users.
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Figure 15: Unbounded: Percentage of user dissatisfaction for
FIFO+UT, LPF+UT, LPF+UPT under provisioning time of 10±5 sec-
onds and |U| = 10, 000 users.

5. Related Work

Projects related to our work fall into categories of
scheduling, user behaviour, and cloud computing auto-
scaling. Scheduling is a well-studied topic in several
domains for which a large number of theoretical prob-
lems, solutions, heuristics, and practical applications
have been considered [13, 14]. Some of the used al-
gorithms include FIFO, priority-based, deadline-driven,
hybrid approaches that use backfilling techniques [15],
among others [16, 17]. In addition to priorities and
deadlines, other factors have been considered, such as
fairness [18], energy-consumption [19], and context-
awareness [9]. Moreover, utility functions were used
to model how the importance of results to users varies
over time [20, 21].

User behaviour has been explored for optimising re-

source management in the context of Web caching and
page pre-fetching [22, 23, 24, 25, 26, 27]. The goal in
previous work was to understand how users access Web
pages, investigate how tolerant users are to delays, and
pre-fetch or modify page content to enhance user expe-
rience. Techniques in this area focus mostly on adapting
Web content and minimising response time of user re-
quests. Service research has also investigated the impact
of delays in users’ behaviour. For instance, Taylor de-
scribed the concept of delays and surveyed passengers
affected by delayed flights in order to test various hy-
potheses [28]. Brown et al. and Gans et al. investigated
the impact of service delays in call centres [29, 30]. In
behavioural economics, Kahneman and Tversky [10] in-
troduced Prospect Theory to model how people make
choices in situations that involve risk or uncertainty.
Netto et al. introduced a scheduling strategy that con-
siders information on how quickly users consume re-
sults generated by service providers [7]. Our previous
work investigated the scheduling of user requests con-
sidering their patience and expectations, but with no
auto-scaling of cloud resources [6].

Shen et al. introduced a system for automating elas-
tic resource scaling for cloud computing [31]. Their
system does not require prior knowledge on the appli-
cations running in the cloud. Other projects consider
auto-scaling in different scenarios and proposed several
approaches, such as modifying the number of resources
allocated for running MapReduce applications [32, 33],
comparing vertical versus horizontal auto-scaling [34],
minimising operational costs [35], and providing inte-
ger model based auto-scaling [36] .

Unlike previous work, our proposed auto-scaling
technique considers information on user patience while
interacting with a service offered by a service provider
using resources from a cloud infrastructure.

6. Conclusions and Future Work

In this article, we extended our investigation on
patience-based algorithms for auto-scaling strategies.
Traditional mechanisms are based solely on resource
utilisation information and other system metrics, ignor-
ing actual users’ needs with respect to their desired
QoS levels. As a consequence, resources are over-
provisioned under scenarios where they are not strictly
needed; that is, where additional resources do not lead
to significant improvement in QoS.

We conducted extensive experiments using FIFO and
Lowest Patience First as scheduling algorithms, and
auto-scaling triggers that rely either on utilisation or
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user patience and utilisation. Our experiments consid-
ered scenarios where the maximum number of resources
could be either bounded or unbounded, and different
versions of the auto-scaling algorithms were designed
to cope with both possibilities. Our experiments consid-
ered non-trivial (i.e., larger than 0) provisioning time.

Experimental results suggest that patience-based
strategies can indeed provide significant economic gains
to service providers. Namely, we observed that these
strategies were able to reduce resource-time usage by
approximately 9% while keeping QoS at the same level
as those based solely on utilisation. We conclude that
the identification of unnecessary buffers in QoS lev-
els that will not necessarily improve user experience
in cloud environments is a key element for service
providers, as it may enable savings in infrastructure
costs and bring competitive advantage for adopters.

We believe the proposed strategies fill an important
gap in the literature. As sensors and Internet of Things
become more pervasive, more data will be available that
can be used to determine factors that influence users’ pa-
tience. By using this data, one could certainly specialise
and improve the techniques presented here. With re-
spect to resource management, the strategies presented
in this work handled horizontal resource elasticity and
assumed that resources are pairwise indistinguishable.
In future work, we aim to relax such assumptions, han-
dling vertical elasticity and the allocation of multiple
types of virtual machine instances.
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