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Abstract—Traffic engineering technologies such as MPLS have
been proposed to adjust the paths of data flows according
to network availability. Although the time interval between
traffic optimisations is often on the scale of hours or minutes,
modern SDN techniques enable reconfiguring the network more
frequently. It is argued, however, that changing the paths of
TCP flows too often could severely impact their performance
by incurring packet loss and reordering. This work analyses
and evaluates the impact of frequent route changes on the
performance of TCP flows. Experiments carried out on a network
testbed show that rerouting a flow can affect its throughput
when reassigning it a path either longer or shorter than the
original path. Packet reordering has a negligible impact when
compared to the increase of RTT. Moreover, constant rerouting
influences the performance of the congestion control algorithm.
Designed to assess the limits on SDN-induced reconfiguration, a
scenario where the traffic is rerouted every 0.1s demonstrates that
the throughput can be as low as 35% of that achieved without
rerouting.

I. INTRODUCTION

Although the “best effort” service that the Internet Protocol
(IP) provides has been able to handle a wide range of work-
loads, current infrastructure requires intelligent traffic manage-
ment to enable sharing resources between delay critical audio
flows and best-effort traffic. Traffic engineering techniques are
widely used by network operators to provide better Quality of
Service (QoS) via fine-grained traffic management. MultiPro-
tocol Label Switching (MPLS) is the classical protocol used
to this end.

MPLS-based traffic engineering allows for dynamically
configuring how the traffic flows across the network based on
available network resources, and for changing the flow routes
dynamically to meet QoS requirements. Unfortunately, route
changes induce jitter that can perturb overlaying transport
protocols. For example, the TCP congestion control algorithm
may improperly assume that some data segments are lost and
hence reduce its sending rate. Hence, in industrial deploy-
ments, operators usually avoid frequent route changes.

Software Defined Network (SDN), on the other hand, en-
ables applications to reconfigure the network more frequently
than previous technologies. Large service providers, including
Microsoft [1] and Google [2], have deployed SDN in pro-
duction environments, thus increasing the efficiency of their
network. However, the frequency of reconfigurations that these
organisations perform is as low as once every 5 minutes [1],

and not all data flows are rerouted during these optimisations
because doing so could severely hurt the performance.

The question this work aims to address is therefore: what
would be the impact of highly frequent rerouting decisions
on network traffic? To answer this question, we evaluate
the impact of frequent route changes on the performance of
Cubic TCP flows. We consider backbone networks with high
aggregation level employing SDN to improve their energy
efficiency. Previous work introduced algorithms to minimise
the number of active system components to reduce its overall
energy consumption [3], [4]. Flows are aggregated on a subset
of links to put network elements in sleep mode, hence max-
imising the utilisation of active components. Frequent and fast
route changes are needed for both reacting quickly to traffic
bursts and waking up sleeping devices to avoid congestion.
The changes are made either to provide more network capacity
or to detect network over-subscription and thus turn off active
components to save energy.

By evaluating whether it is efficient to change the routes
of TCP flows frequently, the analysis focuses on the impact
of packet reordering due to the difference in delay between
two routes. The employed methodology may be relevant
and applicable to any network operator willing to perform
aggressive traffic engineering with frequent route changes.

The rest of the paper is structured as follows. Section
II presents the context and background while Section III
describes the theoretical analysis. Experimental setup and
validations are presented and analysed in Section IV. Section
V discusses related work and Section VI concludes the paper.

II. CONTEXT AND BACKGROUND

A. Context

We consider an operator with an energy-efficient network
whose resources are underutilised at times, and the data flows
are hence rerouted to release links and/or devices that can
henceforth be turned them off. When an increase of network
traffic is detected, the network devices are switched back on,
and the flows are rerouted accordingly to avoid congestion.

The operator employs SDN, a recent trend in network
management that advocates for separating the control plane
from the data plane. The goal is to move towards more pro-
grammable networks, where very sophisticated optimisation
can be done online by a centralised controller, which has
global knowledge of the network status and can automatically



react to changes by rerouting data flows. For example, after
moving to SDN, Google advertises near 100% link utilisation
in their network while maintaining a very high quality of
service [2].

B. Rerouting and congestion control

The TCP’s congestion control algorithm, defined in the RFC
5681, is an important, and one of the most complex, features of
modern TCP implementations. This algorithm tries to split the
network capacity fairly among all the flows traversing it. Under
such algorithm, the sender keeps a congestion window that is
dynamically modified depending on the network conditions.
The source cannot send more data than what fits in this
window during a Round-Trip Time (RTT). The maximum
instantaneous throughput, B, of the TCP connection param-
eters, is thus limited by the size of the congestion window:
B = W ·MSS/RTT , where W is the size of the congestion
window in segments, MSS is the maximum segment size in
bytes.

TCP was initially designed for standard IP routing assuming
that all packets follow the same route towards a destination.
Packet reordering and route changes were considered rare.
However, in an SDN network, the controller may frequently
shift a TCP flow to an alternative path to optimise the
overall network throughput. The route change can impact the
throughput of a TCP flow in two different ways:

• When the new route has higher RTT, the sender increases
the size of the congestion window to maintain the same
sending rate. For example, if the RTT doubles, the
throughput will be halved and will gradually increase
with the growth of the TCP congestion window; a direct
application of the equation B = W ·MSS/RTT .

• The receiver will see packets arriving out of order if the
new route has a lower RTT. TCP’s congestion control
algorithms will assume the worst-case scenario and will
see this as an indication of packet loss due to congestion.
Figure 1 illustrates the problem considering a sample
backbone network. The link ab becomes available for
transmission and hence packets 2 and 3 take a route
shorter than packet 1. The packets will arrive out of order
at the receiver who will use duplicate ACKs to notify
the sender about a problem. The sender will reduce the
size of the sending window to avoid congestion, hence
decreasing the transmission rate.
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Figure 1. Rerouting towards a lower RTT ⇒ packet reordering.

Given that a large part of network traffic is often carried by
a small number of large, long-lived flows [5], rerouting these

flows may significantly reduce the overall network throughput.
We encountered this problem in practice on a testbed set up to
evaluate energy-efficient algorithms [3] [4]. These algorithms,
implemented in the SDN controller ONOS [6], were reacting
too fast to a reduction in the network throughput caused
by a recent rerouting. While the algorithms tried to take
advantage of this transitory condition to save energy, they
created undesired traffic oscillations.

C. Congestion Control Algorithms

The analysis focuses on the impact of route changes on
the default TCP congestion-control mechanism in the Linux
kernel. As of writing, the default algorithm used in all the
tested devices is Cubic, with a fallback to Reno, including
devices using kernel versions 3.2, 3.13, 4.4 and 4.7.
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Figure 2. TCP congestion control; RTT = 50ms; 100mbps link.

Figure 2 shows how the congestion window of a single flow
evolves when using the Reno and Cubic congestion control
algorithms.

1) RENO: The standard TCP congestion control mecha-
nism is Reno, which is still the fallback algorithm in the
Linux kernel. This algorithm is straightforward and comprises
two phases: 1) the slow start phase, where the window size
doubles each RTT; and 2) the congestion control phase where
the window size increases by one each RTT or is divided by
two under packet loss.

The slow start phase allows for a fast increase in the window
size at the beginning of communication. It corresponds to the
spike at time 0 in Figure 2. In this work, we ignore the slow
start.

Although TCP Reno behaves well under small Bandwidth x
Delay Product (BDP), it severely underutilises the channel on
long fat networks – i.e. networks with high data rate and high
delay – because it linearly grows the windows by one every
RTT when recovering from packet loss. In Figure 2, Reno
takes more than a minute to grow the congestion window and
fill a 100Mbps link with an RTT of 50ms.



2) CUBIC: The Cubic TCP algorithm [7] aims to avoid the
shortcomings of Reno and achieve high data rates in networks
with large BDP. At the same time, when Cubic detects a
network with small BDP, it tries to mimic Reno’s behaviour
emulated by a mathematical model. This happens, particularly
in local high-speed, low-delay, networks.

As its name suggests, the algorithm grows the congestion
window by using a cubic function of the elapsed time from
the last loss event y = (∆t)3. More precisely, using a shifted
and scaled version y = 0.4 · (∆t− RTT −K)3 + Wmax. In
this equation, ∆t is the time passed from the last loss event,
Wmax is the size of the congestion window just before the
loss event. K = (Wmax/2)1/3 is a parameter that depends on
Wmax.

Cubic is also less aggressive in reducing the congestion
window at a loss event. Compared to Reno, which halves the
window, Cubic reduces it by 20%.

III. ESTIMATING THE BEHAVIOUR OF TCP CUBIC UNDER
ROUTE CHANGES

A. Recovering from a Loss
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Figure 3. Function used by the Cubic algorithm; RTT = 50ms.

Figure 3 illustrates the cubic function when applied to part
of the trace from Figure 2. At time t = 29.43, a loss is
detected when reaching the bottleneck capacity of a network
path. Cubic hence reduces the congestion window to 80% of
Wmax.

The growth function, y, used to increase the congestion
window depends mainly on Wmax, which makes it easy
to estimate the time taken by TCP cubic to restore its
congestion window after a loss. To do that, we ignore the
insignificant dependency on RTT in the Cubic function and
solve Wmax = y = 0.4 · (∆t − K)3 + Wmax. We obtain
∆t = K = (Wmax/2)1/3 .

Moreover, the RTT and the bottleneck bandwidth are used
to determine the maximum window size. Table I estimates the
size of the congestion window needed to transmit at 100Mbps
with 1448 byte segments. It also uses the equation ∆t = K

to assess the time taken by the Cubic algorithm to grow the
window back to Wmax after a loss.

RTT (ms) 10 50 180 500
Wmax (segment) 87 431 1550 4316.3∗

Time to recover (s) 3.5 6 9.2 13∗

* the default maximum size of the kernel buffer is too small to
allow full speed communications with RTT = 500ms. In this
case, the transmission speed is limited by the size of the kernel
buffer; approximately 2100 segments.

Table I
ESTIMATED Wmax AND TIME NEEDED TO RECOVER AFTER A LOSS,

100MBPS BOTTLENECK LINK.

This estimation is valid only if no further loss is detected.
Figure 3 contains a counter-example where TCP would reach
Wmax at approximately t = 36s, but a loss happened at ∼34s
and forced the congestion control algorithm to reduce the size
of the congestion window.

While particularly interested in the time needed to recover
from a loss, we note that route changes may generate false
loss events when the TCP flow shifts towards a shorter route
– shorter here meaning a route with smaller round trip time. At
such time, the size of the congestion window is reduced, and
cubic tries to grow it back. Intuitively, the throughput of a TCP
flow may drop significantly if the SDN controller attempts a
second re-optimisation in the meantime.

B. Relevant Linux Implementation Details

The TCP implementation in the Linux kernel incorporates
many optimisations [8]. One of the optimisations, which is
very important for our work, is the possibility to undo an
adjustment to the congestion window. This implementation
tries to distinguish between packet reordering and loss by
using the “Timestamp” TCP option. When the sender detects
that a past loss event was actually a false positive due to packet
reordering, the algorithm reverts the window size to the value
used before the reduction. As a result, packet reordering may
have much less impact compared to standard TCP.

C. Multiple TCP Flows on a Bottleneck Link

As mentioned earlier, TCP cannot send more data than the
size of the congestion window per RTT. As a result, when the
sender’s window W is smaller than Wmax, TCP spends part of
the time waiting for acknowledgements without sending any
data.
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Figure 4. Alternated sending and waiting phases.



Figure 4 illustrates this case, summarising data collected
using the tcpdump application to capture the packets of a TCP
flow over a second. The figure shows the times packets were
captured. Approximately 2/3 of the time, there was no packet
passing through the network because the congestion window
is too small (only 150 segments). Under such conditions, a
congestion window of 431 segments was needed to fill the
bottleneck link.

If a route change happens when a flow is waiting for
acknowledgements, there is no re-ordering problem since no
packet is sent. Hence, the probability that a TCP destination
will receive packets out of order increases as W approaches
Wmax. Respectively, when TCP backs off and lowers its
sending rate by reducing W , it also reduces the probability
to be impacted by the rerouting.

If a large number of TCP flows share the same bottleneck
link, the flows spend a lot of time waiting for the ACKs.
Hence, rerouting a large bunch of TCP flows at the same time
may have less impact on the overall network throughput than
rerouting a single TCP flow.

This TCP behaviour may change in the future. The benefit
of smoothing the transmission over time by employing traffic
pacing was shown to have a beneficial effect on network
performance [9] and state-of-art congestion control algorithms,
like BBR [10], use this technique to avoid the bufferbloat
problem.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We consider backbone, highly over-provisioned, networks
where resource capacity is not a limiting factor. The trans-
mission speed is either bounded by a congested link in the
aggregation, or by a very high propagation delay, i.e. by
the size of the maximum allowed congestion window. No
congestion ever occurs on the backbone links.
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Figure 5. Testbed overview

We construct the topology presented in Figure 5. The exam-
ined scenario consists of multiple TCP sources sending data to
remote clients. The transfers pass through a backbone network
employing traffic engineering: the two parallel 10Gbps links.
The traffic is routed through 2 alternative paths within the
backbone network, emulated by these 2 links. The paths have
different delays. One of the backbone paths has no additional

delay (0ms), while the second path induces an additional delay
of X ms to simulate a longer route. We use tc-netem for this
purpose. Each of the two paths (links) has sufficient capacity
to transfer the flows. The bottleneck capacity is outside the
backbone network. Congestion never happens on these 2 links.

The sources are aggregated in groups. The flows from 2
different groups never share a bottleneck point. However, two
flows of the same group compete for the bandwidth allocated
to the group. Each group has a different path RTT, uniformly
distributed in the interval [0ms, 120ms], which adds to the
delay of the backbone paths. The goal is to recreate the
scenario where flows with different end-to-end delay coexist
in the backbone network.

Concerning the physical infrastructure: nodes in the topol-
ogy correspond to Ubuntu 14.04 Linux servers running Open
vSwitch v2.4 [11] (manually compiled for Ubuntu 14.04). The
network is controlled by the ONOS SDN controller (v1.7) via
an out-of-band control connection. We wrote an ONOS SDN
application to reroute the flows between the 2 backbone links.

The backbone links use 10G optical Ethernet interconnects.
The connections to the TCP sources use 1G Ethernet ports. In
the physical topology, both 10G and 1G network interconnects
pass through Dell Ethernet switches. The point-to-point links
are emulated using vlans on these hardware switches. This
permits to reconfigure the network topology remotely. Unfor-
tunately, the queuing disciplines on these switches are opaque
and cannot be fine tuned. To avoid perturbations, we use tc-
tbf (Token Bucket Filter) to limit the speed of each group to
100Mbps. In such a way, the data passing through a hardware
switch is always much below the link capacity. Moreover, this
allows avoiding perturbations due to the Ethernet flow control
mechanisms: PAUSE frame. We use a drop-tail bottleneck
queue having the size 0.1 * BDP.

B. Rerouting Independent Flows

This section analyses the impact of rerouting multiple
independent TCP flows and how the total backbone throughput
changes as a consequence of rerouting.

We generate 20 unsynchronised flows, one flow per group,
that start at random times within a 30-second interval. We run
the transfer for 400 seconds to allow TCP flows to converge
to a steady state. Afterwards, we reroute the traffic every 200
seconds and measure how the aggregated throughput changes
at during rerouting.

Figure 6 shows how the aggregated throughput varies when
the second backbone path induces an additional delay of 10ms,
30ms, 50ms, 70ms or 90ms.

At t = 600, the flows are rerouted towards the path with
lower delay. Respectively, at t = 400 and t = 800, the
flows are rerouted towards the longer path. This experiment
confirms our expectations, that rerouting the flows impacts
their throughput both when moving towards a longer route
and when moving towards a shorter one.

Nevertheless, packet reordering, which happens at t = 600,
has a less pronounced impact than expected. Theoretically,
Cubic would reduce the transmission window to 80% of its
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Figure 6. Throughput drop when rerouting 20 independent cubic flows

size when a loss is detected. Then it would gradually increase
the window back to the size before the loss. However, the
Linux TCP can detect packet reordering in some cases. In
particular, this happens when the difference of delay between
two routes is small compared to the delay of the fastest route.
Hence, a small variation of delay, like 10ms, has a marginal
impact on the total throughput of the flows. The next section
gives more insights on this optimisation.

Rerouting towards the link with higher RTT substantially
reduces the aggregate throughput of the 20 flows (t = 400
and t = 800). The larger the delay difference between the two
routes, the bigger the drop. In this case, rerouting is transparent
to the congestion control algorithm. The drop comes from
the unexpected increase of the delay. As a consequence, the
size of the transmission window must be increased to allow
transmission at the same speed.

C. Rerouting Flows Sharing a Bottleneck Point

To evaluate the impact of sharing a bottleneck point where
flows inside a group compete for bandwidth, we fix the RTT
of the second path to 50ms and vary the number of flows per
group. With one flow per group, 20 flows traverse the network
whereas, under 9 flows per group, there is a total of 180 flows.

Figure 7 shows how competing flows impact the recov-
ering speed after rerouting. The throughput drop caused by
rerouting towards a shorter route becomes quickly insignificant
(t = 600s) in contrast to rerouting towards a longer path
(t = 400s). With the increase in the number of flows sharing a
bottleneck link, each of these flows gets a smaller proportion
of the total bottleneck bandwidth. The flows hence spend more
time waiting for acknowledgements than actually sending data.
At rerouting, fewer flows see their packets arrive out-of-
order. Moreover, the flows that do not experience out-of-order
arrivals can increase their sending rate by using the capacity
released by flows that have just reduced the sending window.
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Figure 7. Impact of the number of flows in each of 20 groups.

As a consequence, the total aggregated throughput on the
backbone links is almost not impacted.

When rerouting flows towards a longer path, the aggregate
throughput recovered slightly quicker when the number of
competing flows per group increases. It is due to non-linear
growth function used by Cubic. Having more flows increases
the probability that some of them will be in the “aggressive
growth” phase of the cubic function.

D. One TCP Flow under Frequent Rerouting

The previous sections showed that packet reordering has
negligible impact compared to the increase of RTT. In this
section, we assess whether very frequent route changes may
reorder enough packets to perturb the congestion control algo-
rithm even if the delay difference between the two considered
routes is small compared to the RTT.

While focusing on analysing a single TCP flow, we use
iperf to transfer 2Gbytes of data and measure its mean
throughput (on testbed from Figure 5). A big enough transfer
size was chosen to reduce the impact of the slow start phase
on the mean throughput. Considering a maximum bottleneck
throughput of 100Mbps, each transfer takes approximately 3
minutes if transferred at full speed. The flow is frequently
rerouted between the two paths. We tested with periods of
rerouting going from once every 15 seconds, to as low as
once every 0.1s.

Figure 8 summarises the results. Considering five experi-
ment runs, each data point in the graph corresponds to mean
throughput, i.e. the amount of transferred data divided by the
total transmission time. The error intervals show the absolute
minimum and maximum values recorded. The baseline without
rerouting shows the average throughput of a TCP flow when it
always passes through the same path. The baseline is the mean
of 20 experiments. The inner plot zooms in on the region with
frequent route changes.
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Frequent route changes have a large impact on the perfor-
mance of the congestion control algorithm. When the traffic is
rerouted once every 0.1s, the throughput is as low as 35% of
the througtput without rerouting. We can also observe that with
a route change every 2 seconds, the throughput is around 60%
compared to the throughtput without rerouting. Although, from
a practical point of view, we believe that these frequencies
of rerouting are extreme (and not very realistic), they were
included here to evaluate the limits on traffic rerouting. To
re-optimise the network at such frequencies, a lot of control
messages must be transmitted between the SDN controller and
the switches, creating a flood of control traffic. Moreover, the
network optimisation problems are usually computationally
intensive and take the time to find a good solution.

It is worth noting that the biggest drop in throughput
is observed when a second rerouting happens before Cubic
recovers from the first rerouting. Previously, we gave an
estimation of the recovery time in Table I.

Figure 9 shows two interesting results for higher RTT:
1) Frequent rerouting has a beneficial effect under an RTT

of 170, observed at period = 0.6s (the first ellipse)
where the mean throughput of a flow rerouted every 0.6s
is higher than the average throughput of a flow that is
always transmitted over the same path.

2) Under RTT=480, the throughput of the flows is also less
impacted when rerouted frequently.

These results are consistent among the multiple transfers.
The error intervals are very tight and difficult to see in the
figure. To explain this behaviour, we analyse in detail the
evolution of the congestion window and packets traversing the
network. We choose to concentrate on the points marked with
ellipses in Figure 9.

a) Inspecting the beneficial effect at RTT=170: Figure
10 gives more insights on this case. The dashed line shows
the evolution of the congestion window without rerouting.
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At times t = 23, t = 43, etc, the congestion control
algorithm does not behave as expected. Instead of reducing the
congestion window by 20% as dictated by the Cubic algorithm,
the drop is much higher. Hence Cubic claims bandwidth
too aggressively and huge number of packets are lost when
reaching the bottleneck capacity.

Moreover, Linux TCP does not employ a multiplicative
decrease technique of reducing the congestion window. In-
stead, it reduces it additively at every second duplicate ACK
received. These two causes together imply a bad performance
at RTT=170.

Rerouting the flow in the meantime perturbs the Cubic
protocol and avoids this unwanted behaviour. It is due to
the optimisation in the Linux kernel which detects out-of-
order deliveries thus reducing the impact of the rerouting. The
evolution of the congestion window in the case when the route
changes every 0.6s can be seen on the continuous, blue, line of
Figure 10. For example, at t = 8, a duplicate ACK is detected
as being due to reordering and not to a loss, the congestion
window is restored to the size before the reduction.

We mentioned in an earlier section that the TCP sender
might “miss” a rerouting because the sender alternates between
sending packets and waiting for ACKs. If the route change
happens when the sender waits for ACKs, no packets will
arrive out-of-order. The blue line illustrates this case. At small
window size, between t = 0 and t = 30, the sender spends a
lot of time waiting. As a result, the probability to be impacted
by a rerouting is small. The bigger the congestion window, the
higher the probability to be impacted by a rerouting. Starting
with t = 120, an equilibrium is created. The sender struggles
to grow the window any further: any rerouting has a high
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probability of reordering packets.

b) Inspecting the unexpected behaviour at RTT=480:
Figure 11, which analyses the evolution of the congestion
windows, shows that the window remains constant if the routes
do not change. This behaviour is expected as the transmission
is limited by the size of the congestion window, which in turn
is constrained by the size of the in-kernel buffer reserved for
the TCP connection.

If we compare the evolution of congestion window in case
of rerouting, we observe that the Linux Kernel’s optimisation,
which detects out-of-order packets, is more susceptible to
work as expected at frequent route changes. This unexpected
behaviour is consistent among multiple transfers.

However, rerouting once every 15 second allows the flow
to converge towards the maximum window size. Any bigger
rerouting period (20s, 30s, etc) will have less impact on the
average throughput. The worst case scenario occurs at a period

of 14s.

V. RELATED WORK

Although the impact of packet reordering on the perfor-
mance of TCP flows has been extensively analysed by the
research community, to the best of our knowledge, previous
work has not specifically evaluated the impact of frequent
flow rerouting. Moreover, most of the existing work employed
discrete-event simulation for evaluating the impact of link fluc-
tuations on TCP flows [12], [13]. The present work considers
a real life SDN controller and testbed.

Bennett et al. [14] were among the first to highlight the
frequency of packet reordering and its impact on the through-
put of TCP flows. Their results showed that packet reordering
has a very strong effect on a network’s performance. Laor
and Gendel [15] have experimentally measured this impact on
a testbed and also concluded that even a small rate of packet
reordering could significantly affect the performance of a high



bandwidth network. As a result, a lot of work was performed
to increase the tolerance of TCP to packet reordering [16] [17]
[18] [19].

Finally, a solution both to detecting unneeded retransmis-
sions caused by packet re-ordering and to undoing the con-
gestion window was proposed and implemented. The problem
of packet reordering was less considered until the introduction
of Multi-Path forwarding, where packets of a single flow are
split among different paths [20] [21]. It is worth noting that
different seetings lead to different conclusions, for example
general networks vs fat trees. Karlsson et al. [20], for example,
concluded that multi-path forwarding reduces the throughput
of TCP flows and that mitigation techniques implemented at
the transport layer in the Linux kernel are not effective in
reducing the impact of packet reordering. On the other hand,
Dixit et al. [21] affirm that multi-path forwarding in fat-tree
data-center networks has little impact on the throughput. In
any case, modern multi-path forwarding techniques try to act
on a flowlet level and avoid reordering [22].

What differentiates our case from the multi-path forwarding
in data-center networks is the fact that packet reordering does
not arrive on a per-packet base. Rerouting a flow induces bursts
of packets arriving out of order. As a result, our work shows
that transport level mitigation techniques are effective as long
as route changes do not happen too often.

VI. CONCLUSION

This work analysed the impact of frequent route changes
on Cubic TCP flows. Although, to the best of our knowledge,
the literature does not confirm that packet reordering caused
by route changes has a noticeable impact on the network
performance, the networking community usually considers it
as an implicit truth.

By attempting to quantify this impact on a real testbed, ex-
periments showed that packet reordering incurred by rerouting
towards a route with lower delay has actually marginal impact
on the throughput of rerouted flows. This negligible impact
is partially due to optimisations introduced by Linux kernel
developers. As a result, the sender can distinguish between
a packet loss and reordering and recovers efficiently with
negligible drops in transmission speed. Only when rerouting
happens unrealistically frequently, we observe a degradation
of the throughput of individual flows, but even so, the effect
decreases as the flow aggregation level increases.

We also showed that shifting the traffic towards a path with
longer RTT has, however, a negative influence on the through-
put of TCP flows. SDN-based traffic engineering techniques
must be constrained to avoid large variations in the end-to-end
delay when rerouting the flows.

In any case, the traffic engineering SDN applications must
be made aware of the short drop of network throughput
following a rerouting and must limit the frequency of network
re-optimisations. Otherwise, this throughput drop caused by
the reaction of the TCP congestion control mechanisms may
be incorrectly interpreted as a need for further optimisation of
network flows.
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