
Multi-Criteria Malleable Task Management
for Hybrid-Cloud Platforms

Eddy Caron, Marcos Dias de Assunção

University of Lyon - LIP Laboratory
UMR CNRS - ENS de Lyon - Inria - UCB Lyon 5668

Email: {eddy.caron, marcos.dias.de.assuncao}@ens-lyon.fr

Abstract—The use of large distributed computing in-
frastructure is a means to address the ever increasing re-
source demands of scientific and commercial applications.
The scale of current large-scale computing infrastructures
and their heterogeneity make scheduling applications an
increasingly complex task. Cloud computing minimises
the heterogeneity by using virtualisation mechanisms, but
poses new challenges to middleware developers, such as
the management of virtualisation, elasticity and economic
models. In this context, this work proposes algorithms for
efficient scheduling and execution of malleable computing
tasks with high granularity while taking into account
multiple optimisation criteria such as resource cost and
computation time. We focus on hybrid platforms that
comprise both clusters and cloud providers. We define
and formalise the main aspects of the problem, introduce
the difference between local and global scheduling algo-
rithms and evaluate their efficiency using discrete-event
simulation.

I. INTRODUCTION

Managing and providing compute resources to user
applications is one of the main challenges tackled by the
distributed computing community. To manage available
resources, existing solutions rely on abstractions where
users submit application requests to a management
system or middleware responsible for task scheduling
and resource allocation. Over the years, with varying
levels of heterogeneity and success, several types of
distributed infrastructure have been established to pro-
vide users with the resources they need to execute
their applications. Cloud computing, by making use
of resource virtualisation, has enabled the provision of
more standard resource units (i.e. virtual machines) that
are allocated atop underlying physical infrastructure.

From the point of view of allocating cloud resources
to be managed by a middleware for running application
tasks, the allocation can be either static, where a fixed
number of resources is allocated; or dynamic, a scenario
in which resources are allocated or released on demand
to match the applications workload. Among the possi-

ble types of deployment, one can identify centralised,
where the middleware is deployed in a single cloud; a
federation, in which the middleware manages resources
obtained from multiple clouds; and hybrid, a case where
cloud resources are used together with clusters, data
centres and workstations.

For reasons of cost, availability, control, and avoid-
ance of provider lock-in, many organisations prefer to
maintain and manage local infrastructure (e.g., their
own clusters and data centres) while using a cloud for
certain workloads, and sometimes they exploit multiple
cloud offerings simultaneously. Such hybrid deployment
scenarios considered in the present work, are hereafter
termed as hybrid-cloud platforms. Although the problem
of scheduling requests onto available resources has been
extensively investigated [1], [2], [3], the number of crite-
ria taken into account when scheduling application tasks
is generally limited. Moreover, cloud computing and
the increasing availability of commercial offerings force
middleware designers to deal with several additional
issues related to managing virtualisation, exploiting
elasticity, and multiple economical models.

In this work we investigate the problem of multi-
criteria management and scheduling of malleable
tasks [4]. These tasks provide a high level of granu-
larity and parallelisation and have numerous practical
applications in scientific and real-life computations [5],
[6], [7]. In contrast to previous work that restricted
the optimisation criteria for scheduling, the present
work investigates algorithms to schedule and efficiently
execute malleable computing tasks with high granularity
while taking into account multiple optimisation criteria
such as resource cost and computation time.

The rest of this paper is organised as follows.
Section II presents background on hybrid platforms
with multiple types of resources. Section III defines
and formalises the main aspects of the considered
problem, introduces the difference between local and
global scheduling, and describes the main steps of the

scheduling algorithms. Detailed explanation of local
scheduling algorithms and realisations for the different
types of platforms are found in Section IV. Section V
presents a global scheduling algorithm and discusses
means to optimise it. Description of simulation settings
and results on performance evaluation of the algorithms
are presented in Section VI. A discussion of existing
work is given in Section VII, whereas the last section
concludes the paper.

II. PLATFORM FRAMEWORK

This work focuses on scheduling of malleable tasks
onto heterogeneous resources, considering several types
of computing infrastructures for middleware deploy-
ment. We use the terms job and task interchangeably.
Our goal is to leverage the heterogeneity of underly-
ing available resources to devise efficient scheduling
strategies. The tasks are submitted to a hybrid-cloud
platform through a single interface provided by the
global scheduler and are scheduled on various types
of systems detailed next. Each system has its local
scheduler that strives to respect tasks requirements.
The acceptance of a job by a local scheduler can
trigger rescheduling activities that can in turn result
in migration of previously scheduled tasks to other
systems. The rest of this section describes the three
types of resource infrastructures considered, whereas
the next section details the (re)scheduling activities that
schedulers perform.

A. Dedicated Cluster

A dedicated cluster is entirely available to a user or
client. By default, it is highly available and is viewed by
a user as a computing resource with negligible cost. Its
performance, however, is bounded and static, a reason
why many organisations also use clusters along with
other types of on-demand infrastructure.

B. Computing Centre

A computing centre is a fee-based resource, where
the computation price Pi per hour of a job i can be
estimated as:

Pi = ti × ni × k

where ti is computation time, ni the number of used
processors, and k is the cost of using a processor over
an hour. Here k accounts for the fixed and variable costs
incurred by providers when offering and managing in-
frastructure, such as energy consumption, management
personnel and so forth. This formula can in fact be used
for all fee-based resources whose price is taken into
account during scheduling.

C. Cloud Infrastructure

A cloud is a more recent model of distributed com-
puting infrastructure under which a resource provider
acquires a certain number of servers that are in turn
rented out to users. Considering Amazon EC2, a widely
used Infrastructure as a Service (IaaS) provider, vir-
tual machine instances can be leased by customers
under various models: reserved instances, on-demand
instances and spot instances.

This work considers the use of spot instances as they
are usually cheaper than their on-demand counterparts.
Switching to on-demand instances is possible when
Amazon EC2 cannot provide the required number of
spot instances. The use of reserved instances may be
more appealing when the cloud usage grows large and
yearly reservation ends up justifying the pre-allocation
of multiple reserved instances.

The choice of the platform types described above is
motivated by the fact that they are frequently used by
enterprises. Dedicated clusters correspond to computing
resources owned by an enterprise. It should be used
as much as possible to maximise return of investment.
Cluster resources shared with or rented from partners
are referred here as allocated clusters. Use of the cloud
depends on the charge of the resources mentioned above
as well as on cloud provider prices.

III. PROBLEM AND SCHEDULING STEPS

The problem of scheduling malleable tasks onto
hybrid clouds is split into two levels, namely:

• Local scheduling: which handles tasks at a
locally controlled resource.

• Global scheduling: responsible for selecting a
resource to which a new task is assigned. Algo-
rithms at this level schedule tasks considering
the overall distributed infrastructure.

The optimisation criteria provided for task schedul-
ing can be conflicting. The introduced algorithms con-
sider three criteria: deadline, budget and task priority.
The goal is to assign a task to a computing resource so
that the price paid for its use and the task’s makespan
respect, respectively, the task’s budget and deadline
constraints. A local scheduler sorts tasks by decreasing
order of priority when selecting a task to execute.

The task parameters are explained as follows. The
input of scheduling consists of a tuple (T,R), where T
comprises computing tasks and information about their
computational complexity, priority, deadline, maximum
budget for execution, or other parameters that a user
might find relevant. An individual task is represented
as Ttask_id:

Ttask_id = (task_id, size, priority, deadline, budget)

2

R, on the other hand, describes a set of hosts with
parameters such as type, performance (MFlops/CPU),
usage cost (e.g. cost per CPU hour as Pi previously
introduced in Section II), and number of CPUs:

Rrsc_id = (rsc_id, type, performance, cost, nbCPU)

While Ttask_id is information provided by a user,
Rrsc_id describes a computing resource managed by
the middleware. The scheduling objective is to provide
mappings of (T,R) such that a candidate resource
Rrsc_id is as closer a match to a task Ttask_id require-
ments as possible.

The scheduling Step 1 defines two parameter sets
for a given tuple (Ttask_id, Rrsc_id) namely optimising
cost and computation time (i.e. makespan):

{Pcost, Pperf} = create_schedules(Ttask_id, Rrsc_id)

The building of such schedules depends on the type
of resources considered for task execution – e.g. for a
cloud we can vary the number and type of machines.
Although task execution on a low-power machine will
be cheaper, it may take longer than allocating sev-
eral powerful instances. For clusters the balance of
makespan and price depends on the reservation strategy
in place. The speed-up of using multiple processor cores
is rarely linear, so usually the more processors we use
the smaller is the performance/price ratio. The number
of reserved time slots also correlates with the ratio
because of deployment and start-time overhead; i.e., an
application needs time to start running. Although this
execution time is usually paid for, it is not actually used
for task execution. Specific optimisation schemes to
handle this step are given in Section IV which describes
the resource-specific local algorithms.

A submission strategy Pstrategy defines the actual
execution cost, the list of processors used for com-
putation, the intervals over which processors will be
allocated as specified by start (st) and end time (et), and
the list of tasks to be executed with these parameters.
More formally, a Pstrategy can be viewed as:

Pstrategy = (cost, {(cpu_id1, st1, et1),
(cpu_id2, st2, et2), . . . , (cpu_idn, stn, etn)},

{tasks_to_migrate})

where tasks_to_migrate refers to tasks that will be
rescheduled if the new task is accepted. A candidate –
a tuple composed of task, resource, submission parame-
ters and the candidate type – hence refers to a computing
resource that can suit a given job execution scenario;
i.e., the expected job makespan, execution cost, and
list of tasks to be rescheduled. Let us define a good
candidate as a resource respecting both the deadline

and budget of a task, and a bad candidate as one that
does not respect at least one of the two constraints.

For each possible set of submission parameters,
there exists a type of candidate (good or bad) that is
initially set to null:

∀ strategy ∀rsc_id ∀task_id
∃ Cstrategy,rsc_id,task_id | Cstrategy,rsc_id,task_id

= (Ttask_id, Rrsc_id, Pstrategy, null)

At scheduling Step 2, a candidate status is repre-
sented by boolean whose value is true if the candidate
parameters respect all the task requirements and false
otherwise. A job makespan, when choosing a given
candidate, is represented by:

P.makespan = max
i

P.cpu_usagei.et

Moreover, a candidate is considered good when the
following inequality is respected:

IsGood(Ci) = Ci.T.deadline ≥ Ci.P.makespan &

Ci.T.budget ≥ Ci.P.cost &

Ci.T.size ≥
∑
j

Ci.P.tasks_to_migratej

Next, the null value used on the previous step is
replaced by the actual type of the candidate, true for
a good candidate or false for a bad one. Hence, we
redefine the types of all candidates in the previously
described list as it is shown in the equation:

Cstrategy,rsc_id,task_id = (Ttask_id, Rrsc_id, Pstrategy,

IsGood(Cstrategy,rsc_id,task_id))

Step 3 splits the candidate set into two subsets
namely containing good and bad candidates as repre-
sented by:

Cgood = {Ci | IsGood(Ci) = true}
Cbad = {Ci | IsGood(Ci) = false}

After that, Step 4 picks a candidate among the set
of all the potential candidates {Ci} to which a task
is then submitted. For simplicity, we use a Heaviside
step function to take into account the budget or deadline
overhead:

H(x) =

{
0 if x ≤ 0
1 if x > 0.

Using this function we define the operator (·)+ as:

(x)+ = H(x) · x

3

If there exist good candidates, we pick the cheapest
one. Otherwise, two simple strategies are possible for
selecting a candidate Cfetch:

1) Pick the least expensive candidate among those
with smallest delay, where:

{Cfetch} =

{
C ∈ {Ci} |

(C.P.makespan− C.T.deadline)+ =

min
(Ci.P.makespan−Ci.T.deadline)+

Ci

}
such that:

Copt = argmin
Cfetch.cost

Cfetch

2) Select the fastest candidate among those with
smallest spent budget, where:

{Cfetch} =

{
C ∈ {Ci} |

(C.P.budget− C.T.cost)+ =

min
(Ci.P.budget−Ci.T.cost)+

Ci

}
such that:

Copt = argmin
Cfetch.deadline

Cfetch

IV. LOCAL SCHEDULING ALGORITHMS

As each type of platform has its own characteristics,
we provide a specific local scheduling algorithm for
each one. The proposed algorithms, however, provide
the same interface and expect the same parameters
in order to take a decision on task scheduling. The
common task parameters required by all algorithms
in order to determine the scheduling of new task are
namely: size, priority, deadline and budget.

A local scheduling algorithm can offer more than
one possible candidate; for example, it gives the options
of either respecting deadline or budget constraints, when
both cannot be simultaneously respected. Moreover, the
algorithm may not return any candidates at all, such as
when the sum of the sizes of tasks to be rescheduled
exceeds the new task’s size. Therefore, all described
algorithms provide as output a list of candidates even if
it contains only one element.

The algorithms described next compute the can-
didate parameters. When a task submission candidate
is placed in the queue, the preempted jobs should be
rescheduled by the submitter of the new job.

A. Dedicated Cluster

Algorithm 1 presents the placement of tasks on
a dedicated cluster according to their priority while
striving to respect users requirements. The higher a
task’s priority, the earlier it is executed. Once a task
becomes the first in the queue, it is executed using all
available processors, as we target applications with high
parallelisation levels.

As described earlier, when a new task is admitted
by the scheduler the deadlines of previously scheduled
tasks may no longer be respected. The possible deci-
sions under such a case are the following:

• Reschedule tasks whose deadlines are no longer
respected;

• Do not schedule the new job on the current host.

As illustrated by Algorithm 1, when a new job is
received, the scheduler computes two lists namely with
jobs whose priorities are lower than that of the received
job (line 2), and one with jobs whose priorities are
higher than the incoming job’s (line 3). Then the algo-
rithm checks whether the new job’s deadline is respected
(lines 5 to 10). After that, it determines the jobs whose
deadlines can still be respected if scheduled on the same
host, and then builds a list with jobs whose deadlines
can no longer be satisfied (lines 12 to 18). Jobs whose
deadlines cannot be respected become candidates to be
rescheduled (see the host data structure in lines 20 to
24). As the position of a job in a queue is determined
by its priority, it is not worth rescheduling a job on the
same resource because it will take the same place in
the queue. The rescheduling of a job ends if it reaches a
resource that does not support rescheduling (e.g. Cloud)
or after postponing another job’s deadline under lack of
resources. To prevent excessive rescheduling, the total
size of rescheduled jobs should not exceed the size of
the new job being scheduled.

B. Allocated Cluster

Algorithm 2, which illustrates the scheduling for an
allocated cluster, is similar to scheduling for a dedicated
cluster, except for the fact that the local scheduler does
not control all the underlying cluster resources.

In order to execute jobs, a reservation must be made
through the local scheduler. A reservation consists in a
set of processors which the scheduler can dispose of
during a fixed time period. As we focus on malleable
jobs, one job can be executed during several reservations
even if the number of reserved processors is not the
same across reservations.

To make reservations correctly, we first simulate the
placement of a new task and calculate the amount of

4

Algorithm 1: Dedicated Cluster Algorithm (DCA)
1 schedule_received_job(job)
2 scheduled_after={ j ∈ jobs_queue : j.priority < job.priority }
3 scheduled_before=jobs_queue \ scheduled_after
4 host.id = self.id
5 job_finished=job.length +

∑
j∈scheduled_before j.length

6 host.end_time = job_finished
7 if host.end_time ≤ job.deadline then
8 host.good_candidate = true
9 else

10 host.good_candidate = false
11 end
12 host.rescheduled_jobs=[]
13 host.cost=0
14 for j ∈ scheduled_after do
15 if job_finished + j.length < j.deadline then
16 job_finished = job_finished + j.length
17 else
18 host.rescheduled.append(j)
19 end
20 end
21 if

∑
j∈host.rescheduled j.length < job.length then
// list of one host

22 parent.send([host])
23 else

// avoid using this host
24 parent.send([]) // empty list
25 end

processor time to reserve in order to fulfil the resource
requirements of all jobs (lines 1 to 12 of the algorithm).
Then, as done for the dedicated cluster, we sort jobs
by decreasing order of priority and check whether
deadlines of all tasks are respected. After that, the
algorithm copies one for dedicated cluster only adding
the budget sufficiency step.

C. Cloud Scheduler

For clouds, more detailed information is required to
determine the type of allocated machines. The rationale
of Algorithm 3 is to verify whether the cloud is able
to execute a received job respecting its budget and
deadline. If that is the case, the algorithm returns a
good candidate. Otherwise, it returns a list of two
candidates; the first minimising the budget overspend
and calculating the execution time needed with this
budget, and the second calculating the amount of money
needed to finish the job in time.

However, clouds have their intricacies that demand a
technique to optimise expenses slightly. Certain clouds
(e.g. Amazon EC2) charge per-hour fees for resource
usage. Hence, the same money is spent for 30 minutes
and 59 minutes of use of a given computing resource. To
exploit this particularity one should only shut down free
machines at the end of their payment hour. All the jobs
scheduled on the cloud should use as much resources
as possible from the already running machines. In
Algorithm 3, the time left for a machine is denoted by
the variable free_time_left.

Algorithm 2: Allocated Cluster Algorithm (ACA)
1 schedule_received_job(job)

// Copy scheduling table to simulate job
placement

2 simsc = schedule_table.copy()
3 simsc.reserve(job.size)
4 scheduled_after={ j ∈ jobs_queue : j.priority < job.priority }
5 scheduled_before=jobs_queue \ scheduled_after
6 host.id = self.id

// Simulate scheduling of jobs with high
priority, not affected by the new job

7 for j ∈ scheduled_before do
8 simsc.schedule(j)
9 end

10 sched_params = simsc.schedule(job)
11 criterion1 = (sched_params.end_time ≤ job.deadline)
12 criterion2 = (sched_params.cost ≤ job.budget)
13 if criterion1 and criterion2 then
14 host.good_candidate = true
15 else
16 host.good_candidate = false
17 end
18 host.end_time = sched_params.end_time
19 host.cost = sched_params.cost

// Calculate list of rescheduled jobs
20 host.rescheduled_jobs=[]
21 for j ∈ scheduled_after do
22 if simsc.schedule(j).end_time > j.deadline then
23 simsc.remove(j)
24 host.rescheduled_jobs.append(j)
25 end
26 end
27 if

∑
j∈host.rescheduled j.length < job.length then

28 parent.send([host]) // list of one host
29 else

// avoid use of this host
30 parent.send([]) // empty list
31 end

Algorithm 3: Cloud Cluster Algorithm (CCA)
1 schedule_received_job(job)
2 host.id = self.id
3 number_of_vm = d job.size/(vm_productivity × job.deadline) e
4 price = number_of_vm ×(d job.deadline e× cost_vm_hour -

free_time_left)
5 host.cost = price
6 host.end_time = job.deadline
7 host.reschedule = []
8 if host.cost ≤ job.budget then
9 host.good_candidate = true

10 parent.send([host])
11 else
12 host.good_candidate = false

// One more option for scheduler
minimizing budget overspend

13 host2.id = self.id
14 host2.end_time = cloud.get_time(job.budget)
15 host2.cost = job.budget
16 host2.reschedule = []
17 host2.good_candidate = false
18 parent.send([host, host2])
19 end

V. GLOBAL SCHEDULING MODEL

The goal of the global scheduling algorithm is to
optimise the overall money spent while respecting task
deadlines and budgets.

A basic global scheduler would broadcast job re-

5

Fig. 1: Example of distributed heterogeneous platform structure.

quirements to all computing resources and choose the
best candidates. If good candidates exist, we pick one
with the lowest price to which a job is submitted. This
approach is efficient when the number of computing
resources is small, but as the number grows the global
scheduler may become a bottleneck. Hence, we propose
a hierarchical approach for the global scheduler. The
principle of this approach is to pass down the hierarchy
details of a task execution, aggregate answers from
local schedulers using a multi-level system and choose
a convenient host. The approach considers a multi-level
system comprising scheduling agents structured as a tree
with computing hosts as leaves.

The rationale of Algorithm 4, used for global
scheduling, is simple. Each scheduling agent requests
from its children a list of candidates. If there exists a
good candidate, the agent forwards it one level up in
the hierarchy. Otherwise it returns a candidate with the
best price with the least deadline violation and another
and another with the earliest makespan among those
that least exceed the budget. The top level node of the
hierarchy then returns one good, or two bad, candidates
to the caller which chooses one onto which the job is
scheduled.

One can see that the simple approach is a particular
case of hierarchical algorithm with just one root with
all computation nodes connected directly to it. The
hierarchical algorithm is distributed and its complexity
can be expressed as O(mn), where m is maximum leaf
depth, n is maximum number of children per scheduling
agent.

VI. PERFORMANCE EVALUATION

A Python simulator was developed in order to
validate and evaluate the efficiency of the proposed
algorithms. We resorted to discrete-event simulation as
it enables controlled and repeatable experiments, and
because the use of real resources such as those allo-
cated from a cloud, could make the cost of evaluation
prohibitive. The choice was hence motivated by the need
to test all the types of previously described resources,

Algorithm 4: Algorithm used by scheduling agent.
1 agent_on_job_receive(job)
2 children.broadcast(job)
3 hosts = children.gather()
4 good_candidates =

{h : h ∈ hosts, h.good_candidate = true}
5 if good_candidates.length 6= 0 then
6 best_candidate= argmin

h∈good_candidates
(h.cost)

7 parent.send(best_candidate)
8 else

// No good candidates
// Minimise budget overspend

9 min1 = min
h∈hosts

(h.cost− j.budget)+

10 list1 =
{h : h ∈ hosts, (h.cost− j.budget)+ = min1}

11 candidate1 = argmin
h∈list1

h.end_time

// Minimize deadline overpass
12 min2 = min

h∈hosts
(h.end_time− j.deadline)+

13 list2 = {h : h ∈
hosts, (h.end_time− j.deadline)+ = min2}

14 candidate2 = argmin
h∈list2

(h.cost)

15 parent.send([candidate1, candidate2])
16 end

namely a dedicated cluster with negligible computing
price, a paid allocated cluster, and cloud resources.

For the clusters the granularity at which resources
can be allocated is one minute, and the performance of
all processors is homogeneous. For the paid clusters, the
cost per processor minute is taken as a cost unit. The
price of an hour on an 8 processor machine on the cloud
is equal to 960 units (2 units/minute per processor).

The jobs were generated randomly. The time be-
tween job arrivals was exponentially distributed whose
random variable has a mean of 1 minute. The priority is
an integer uniformly chosen from 1 to 20. The deadline
for all tasks is uniformly distributed between minimal
possible execution time (using maximal number of
processors) and time of execution on a single processor.
To evaluate the behaviour of the algorithms, three sets
of jobs were generated: small jobs (60-120 processor
minutes), big jobs (1000-2000 processor minutes) and
mixed sets with equal number of tasks of both sizes.

We considered three evaluation metrics:

• Total job execution time, which is sum of the
time between job arrival and end of execution
for all jobs.

• Total execution cost.

• Delay of jobs against their initial deadlines.

A round-robin algorithm which submits a job to a
uniformly chosen resource was taken as baseline and
tested against the same job sets. Algorithms were run on
sets of different sizes, gradually increasing the number
of jobs. Each algorithm was run twice for all the job

6

sets considering namely: the first run where in the
absence of “good” candidates the algorithm chooses the
least expensive “bad” candidate (money saving strategy,
policy A); and the second run in which the fastest
candidate is picked (time saving strategy, policy B). The
rest of this section presents the simulation plots for all
the described variations of parameters.

Fig. 2: Total cost for mixed jobs.

Fig. 3: Total execution time of mixed jobs.

The graphs in figures 2 to 4 demonstrate that in
general the proposed algorithms outperform the round-
robin approach except under small tasks. However, even
in this case the proposed algorithms give much better
savings of budget (Figure 6) and significantly lower
delay (Figure 7). In the case of big jobs, our algorithm
shows better performance considering all metrics.

The difference between the policies of budget over-
spend and delay minimisation is also shown. It corre-
sponds to the nature of policies minimising the amount
of money spent on computations and delay respectively.

Fig. 4: Total delay of mixed jobs.

Fig. 5: Total execution time of small jobs.

Fig. 6: Total cost of small jobs.

VII. RELATED WORK

There exists a vast literature on task scheduling on
distributed systems, part of which considers scheduling
onto heterogeneous resources [4], [8]. The use of clouds

7

Fig. 7: Total delay of small jobs.

to augment the capabilities of local infrastructure has
also been considered in previous work [9].

The case of multi-criteria optimisation has also been
considered [10], even though the proposed algorithms
are often off-line, and require prior information about
tasks in order to execute. On-line multi-criteria schedul-
ing algorithms with no a-priori information about tasks
has been considered in previous work, where comput-
ing resources are represented by clusters composed of
ordinary computers of heterogeneous performance [11],
and where the choice of platforms is much richer and
includes Internet desktop Grids, best effort Grids and
Clouds [12]. Stating the same problem, this previous
work offers absolutely different heuristic solutions tai-
lored to desktop Grid environments and hence less
efficient when considering hybrid clouds.

The algorithms proposed in our paper have ad-
vantages over the precited existing work, as it uses
rescheduling mechanisms for moving tasks across re-
sources. In order to maximise efficiency we focused on
malleable tasks.

VIII. CONCLUSIONS

This paper presented algorithms that optimise re-
source consumption. Though the work considered a
large list of target platforms, it can further be extended.
The algorithms can also be customised to suit the needs
of a user. Additional criteria (e.g. energy efficiency)
could be included with minor modifications of local
algorithms and the function IsGood.

The efficiency of algorithms was demonstrated by
simulation and is being evaluated with real computa-
tional tasks. The results may slightly differ because of
different distributions of the task sizes and of periods
between task arrivals.

IX. ACKNOWLEDGEMENT

We thank Semen Marchuk for his help in this work
especially for his work on the simulator.

REFERENCES

[1] Pulin Agrawal and Smitha Rao. Energy-aware scheduling
of distributed systems. Automation Science and Engineering,
IEEE Transactions on, 11(4):1163–1175, 2014.

[2] Tracy D Braun, Howard Jay Siegel, Noah Beck, Ladislau L
Bölöni, Muthucumaru Maheswaran, Albert I Reuther, James P
Robertson, Mitchell D Theys, Bin Yao, Debra Hensgen, et al.
A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed comput-
ing systems. Journal of Parallel and Distributed computing,
61(6):810–837, 2001.

[3] Krithi Ramamritham and John A Stankovic. Dynamic task
scheduling in hard real-time distributed systems. IEEE soft-
ware, (3):65–75, 1984.

[4] Denis Trystram. Scheduling parallel applications using mal-
leable tasks on clusters. In International Parallel and Dis-
tributed Processing Symposium (IPDPS 2001), pages 199–,
Washington, USA, 2001.

[5] Ricky A Kendall, Edoardo Aprà, David E Bernholdt, Eric J
Bylaska, Michel Dupuis, George I Fann, Robert J Harrison,
Jialin Ju, Jeffrey A Nichols, Jarek Nieplocha, et al. High
performance computational chemistry: An overview of nwchem
a distributed parallel application. Computer Physics Commu-
nications, 128(1):260–283, 2000.

[6] S. Rampersaud, L. Mashayekhy, and D. Grosu. Computing nash
equilibria in bimatrix games: Gpu-based parallel support enu-
meration. Parallel and Distributed Systems, IEEE Transactions
on, 25(12):3111–3123, Dec 2014.

[7] Stavros A Zenios. High-performance computing in finance: The
last 10 years and the next. Parallel Computing, 25(13):2149–
2175, 1999.

[8] S. Prabhakaran, M. Neumann, S. Rinke, F. Wolf, A. Gupta, and
L.V. Kale. A batch system with efficient adaptive scheduling for
malleable and evolving applications. In International Parallel
and Distributed Processing Symposium (IPDPS 2015), pages
429–438, May 2015.

[9] Marcos Dias de Assunção, Alexandre di Costanzo, and Ra-
jkumar Buyya. Evaluating the cost-benefit of using Cloud
computing to extend the capacity of clusters. In 18th ACM
International Symposium on High performance Distributed
Computing (HPDC 2009), pages 141–150, New York, USA,
2009. ACM.

[10] Veronika Rehn-Sonigo. Multi-criteria mapping and schedul-
ing of workflow applications onto heterogeneous plat-
forms. PhD thesis, University of Passau, 2009. http://d-
nb.info/100937074X.

[11] Ranieri Baraglia, Patrizio Dazzi, Gabriele Capannini, and Gi-
ancarlo Pagano. A multi-criteria job scheduling framework for
large computing farms. In Proc. of the 10th IEEE International
Conference on Computer and Information Technology, pages
187–194, 2010.

[12] Mircea Moca, Cristian Litan, Gheorghe Cosmin Silaghi, and
Gilles Fedak. Multi-criteria and satisfaction oriented schedul-
ing for hybrid distributed computing infrastructures. Future
Generation Computer Systems, (0):–, 2015.

8

