
GPU-Accelerated Algorithms for Allocating Virtual Infrastructure
in Cloud Data Centers

Lucas Leandro Nesi�, Mauricio Aronne Pillon�, Marcos Dias de Assunção⊕, Guilherme Piegas Koslovski�
Graduate Program in Applied Computing – Santa Catarina State University – Joinville – Brazil�

Inria Avalon, LIP Laboratory, ENS Lyon, University of Lyon – France⊕

lucas.nesi@edu.udesc.br, mauricio.pillon@udesc.br, assuncao@acm.org, guilherme.koslovski@udesc.br

Abstract—Allocating IT resources to Virtual Infrastructures
(VIs) (i.e. groups of VMs, virtual switches, and their network
interconnections) is an NP-hard problem. Most allocation al-
gorithms designed to run on CPUs face scalability issues when
considering current cloud data centers comprising thousands
of servers. This work offers and evaluates a set of allocation
algorithms refactored for Graphic Processing Units (GPUs).
Experimental results demonstrate their ability to handle three
large-scale data center topologies.

1. Introduction
Under the Cloud computing model, Infrastructure-as-a-

Service (IaaS) providers deliver on-demand access to VIs
comprising virtual resources that are deployed onto Data
Center (DC) infrastructure. Each tenant can customize a
VI according to the requirements of an application whose
performance can be influenced by the network configuration
and assigned resources. An allocation solution can optimize
a single or multiple criteria such as decreasing DC load and
VI latency, reducing energy consumption, among others [1].

Such problem is NP-hard [2] as the number of possible
solutions for a VI request grows with its size and the size of
DC graphs, which is an issue as modern DC architectures,
such as Fat-Tree, BCube, and DCell can have thousands of
servers and links.

The high-performance of GPUs make them potential
candidates to overcome CPU limitations and support the
allocation of VIs. GPUs offer a high-degree of parallelism,
high throughput memory [3], and general purpose program-
ming tools, such as Compute Unified Device Architecture
(CUDA). To run efficiently on GPUs, well-known graph
algorithms [4], [5] must be refactored.

Therefore, this refactors a set of graph algorithms that
are then used to compose allocation strategies as part of a
GPU-accelerated framework for VI allocation. Microbench-
marks are used to compare the speedup of each individual
algorithm against CPU-based approaches. The results show
the applicability of GPU algorithms to large-scale cloud data
centers. The framework, examples, and documentation are
publicly available1.

This research was carried out at the LabP2D, and supported by NVIDIA,
FAPESC, and UDESC.

1. Available at https://bitbucket.org/lucasnesi/vnegpu.

2. CPU-based Algorithms for VI Allocation
The state-of-the-art provides essentially Virtual Network

Embedding (VNE) and cloud solutions for problem of
mapping VIs to physical infrastructure. Mixed Integer Pro-
gramming (MIP) or Linear Programming (LP) offer optimal
solutions generally used as baseline for comparisons [6], [7],
but the problem complexity and search space often create
opportunities for heuristic-based solutions [1] and grouping
techniques [5]. Their scalability and applicability to real
DCs, however, remain a challenge as aggressive pruning
of physical and virtual candidates may lead to partial and
inefficient solutions under certain topologies [8].

GPU-accelerated algorithms can be successfully applied
to speed up heuristics and simulators, hence allowing for
investigating and evaluating large-scale scenarios that more
closely match the requirements of real cloud DCs. The
microbenchmark analysis (Sec. 4) highlight the application
of GPU-accelerated algorithms.

3. GPU-Based Algorithms for VI Allocation
The allocation of resources to VIs is commonly sup-

ported by well-known graph algorithms. We select and
refactor for GPUs a set of algorithms for comparing edges
and vertices (Local Resource Capacity (LRC), Worst-Fit
(WF), Best-Fit (BF), and Page Rank (PR)), shortest path
algorithms (Dijkstra, R-Kleene), data clustering (K-Means
and MCL), and a custom graph allocation algorithm.

As a DC graph and a VI request have common character-
istics such as vertex and edge attributes, and both are sparse
graphs, we extend the Compressed Sparse Row (CSR) for
representing both graphs. CSR stores the graph topology
using a directed edge representation enabling random access
on edges of any node. As a VI is commonly formulated
as an undirected graph [1], we enhance CSR by using
the Edge Map (EM) vector for identifying the source and
destination of undirected graphs. The access of edges on
directed or undirected graphs is hence performed with O(1)
time complexity. Our custom graph allocation algorithm is
performed in two steps. The first step iterates over the VI
nodes, matching each VI node to the most appropriated DC
node using either BF or WF. If a node cannot be allocated,
the algorithm aborts and the VI is rejected. The second step
maps the edges of the VI to the DC paths finding the shortest
valid path using a shortest path algorithm.

TABLE 1. RUNTIME FOR MICROBENCHMARKS.

Graph Hardware Page Rank Dijkstra R-Kleene K-Means Markov
Clustering

(MCL)

Graph Allocation
(WF+|Lv|×SSSP)

BCube 8, 3
GTX 1080 2.13± 0.03 ms 0.58± 0.05 ms 592.22± 1.77 ms 6.60± 0.02 ms 1.29± 0.01 s 111.06± 2.30 ms
Titan XP 2.13± 0.04 ms 0.55± 0.04 ms 378.68 ± 1.70 ms 5.43± 0.01 ms 923.87± 2.56 ms 112.11± 1.03 ms
Intel i7 5.66± 0.03 ms 0.49± 0.06 ms 32.02 ± 0.41 m 70.48± 1.09 ms 1.12± 0.01 h 200.95± 2.05 ms

BCube 7, 4
GTX 1080 2.01± 0.03 ms 0.92± 1.08 ms 80.21± 0.02 s 107.99± 0.52 ms 11.01± 0.08 m 161.09± 2.84 ms
Titan XP 2.00± 0.07 ms 0.63± 0.04 ms 44.52± 0.03 s 65.18± 0.49 ms 6.78± 0.02 m 161.08 ± 0.99 ms
Intel i7 25.45± 0.02 ms 2.38± 0.01 ms 22.23± 0.26 h 1.67± 0.05 s 13.18± 0.01 h 1.13 ± 0.10 s

Fat Tree 24
GTX 1080 2.49± 0.06 ms 0.59± 0.05 ms 185.83± 6.27 ms 5.17± 0.03 ms 3.72± 0.00 s 120.06± 2.75 ms
Titan XP 2.38± 0.12 ms 0.60± 0.08 ms 122.17± 1.97 ms 5.06± 0.03 ms 2.61 ± 0.00 s 126.22± 3.38 ms
Intel i7 4.96± 0.07 ms 0.30± 0.01 ms 2.86± 0.01 m 116.90± 0.05 ms 4.52 ± 0.02 h 123.04± 0.22 ms

Fat Tree 48
GTX 1080 3.64± 0.16 ms 0.72± 0.05 ms 93.90± 0.38 s 523.63± 1.23 ms 24.31± 0.00 m 209.05± 1.56 ms
Titan XP 3.60 ± 0.05 ms 0.68 ± 0.04 ms 51.60 ± 0.10 s 164.98 ± 0.64 ms 14.06 ± 0.00 m 208.89± 0.44 ms
Intel i7 32.80 ± 0.07 ms 2.38 ± 0.10 ms 26.13 ± 0.18 h 4.48 ± 0.01 s > 2 days 1.02± 0.05 s

DCell 7 2
GTX 1080 0.36± 0.02 ms 0.64± 0.03 ms 131.12± 2.66 ms 2.84± 0.04 ms 2.44± 0.24 s 136.95± 4.63 ms
Titan XP 0.34± 0.01 ms 0.63± 0.01 ms 79.81 ± 1.03 ms 2.61± 0.04 ms 1.69 ± 0.26 s 134.84± 1.47 ms
Intel i7 0.44± 0.03 ms 0.29± 0.02 ms 2.02 ± 0.01 m 27.71± 0.36 ms 2.85 ± 0.03 h 120.47± 0.45 ms

DCell 11 2
GTX 1080 0.39± 0.00 ms 0.65± 0.01 ms 22.57± 0.05 s 38.64± 0.05 ms 3.24± 0.00 m 162.45± 1.37 ms
Titan XP 0.38± 0.01 ms 0.65± 0.02 ms 12.52 ± 0.05 s 26.71 ± 0.11 ms 1.84 ± 0.01 m 164.77± 1.06 ms
Intel I7 2.68± 0.03 ms 1.46± 0.02 ms 5.33 ± 0.02 h 801.52 ± 1.34 ms > 2 days 715.18± 61.45 ms

4. Speedup Analysis Using Microbenchmarks
We evaluate each algorithm individually to compare their

speedup against their CPU counterparts. Two GPUs are used
for performance analysis, namely NVIDIA GeForce GTX
1080 (8 GB) and NVIDIA Titan XP (12 GB), on a machine
with an Intel i7 2600K and 32 GB of RAM. The machine
runs Ubuntu 17.04 Server with CUDA 9.0.176, NVIDIA
driver 384.81, and GCC 5. Each experiment is repeated 10
times and the reported results are mean values with standard
deviation. To compare the CPU and GPU implementations
fairly, the runtime comprises only the execution of the main
function, disregarding the initial memory allocation and
transfer, and program initialization.

Table 1 summarizes the average runtime results for the
microbenchmarks. We omit results on LRC algorithm as
it does not pose enough processing load to express any
sufficient time measure. Also, as WF and BF present similar
behavior we report the results on graph allocation consid-
ering WF for vertex and edge comparison and Dijkstra for
shortest path (an execution for each virtual link). For the PR
algorithm, we use the node capacity metric. We highlight the
9× speedup under the Fat-Tree 48 scenario. Regarding the
Dijkstra algorithm, node 0 is the initial node in all scenarios.
As the dataset size increases, the GPU outperforms the CPU
implementation. On the largest topology, Fat-Tree 48, the
GPU speedup is 3.5× compared to the CPU counterpart.

The R-Kleene is executed using the number of edge
hops as the metric. For the intermediate-size topologies,
the GPU achieved a speedup of 5073× on BCube 8, 3. On
the largest topology, the GPU speedup is 1823×. For the
execution of the K-Means, we arbitrarily select 6 groups. For
all scenarios, the GPU algorithms are faster. The speedup is
27× when using the Fat-Tree 48 and 30× on DCell 11, 2.
The execution of the MCL used the parameters p = 2,
r = 1.2 and ε = 0.0 (empirically defined for the Fat-
Tree topology). Moreover, the ε = 0.0 expresses the worst-
case scenario regarding runtime. We highlight the 6234×
speedup achieved on the Fat-Tree 24. Also, the Fat-Tree 48
and DCell 11, 2 CPU executions took more than 2 days and

were hence aborted. Last, for the allocation algorithm, we
used a 400-nodes request for all topologies. We highlight
the speedup of 7× achieved on the BCube 7, 4.

The microbenchmarks highlight that GPU speed up most
algorithms for VI allocation. Multiple executions of an
algorithm, or combinations of algorithms, may be required
to find a suitable allocation.

5. Conclusion
We created a GPU accelerated framework and GPU

versions of classical graph algorithms for allocating re-
sources to VIs. Using microbenchmarks, all algorithms were
evaluated and their speedup compared against their CPU-
based counterparts. R-Kleene and MCL achieved speedups
of 5073× and 6234× respectively. In addition to achieving
good speedup, the framework allows for considering prob-
lem sizes much larger than those found in the literature.

References
[1] A. Fischer et al., “Virtual network embedding: A survey,” IEEE

Communications Surveys Tutorials, vol. 15, no. 4, pp. 1888–1906,
Fourth 2013.

[2] C. Fuerst et al., “How hard can it be?: Understanding the complexity
of replica aware virtual cluster embeddings,” in 23rd Int. Conf. on
Network Protocols (ICNP). CA, USA: IEEE, Nov 2015, pp. 11–21.

[3] N. K. Govindaraju et al., “A memory model for scientific algorithms
on graphics processors,” in Proc. of the ACM/IEEE Conference on
Supercomputing. NY, USA: ACM, 2006.

[4] L. Page et al., “The pagerank citation ranking: Bringing order to the
web.” Stanford InfoLab, Technical Report, no. 1999-66, Nov. 1999.

[5] M. Rost et al., “Beyond the stars: Revisiting virtual cluster embed-
dings,” SIGCOMM Computer Communication Review, vol. 45, no. 3,
pp. 12–18, Jul. 2015.

[6] N. M. M. K. Chowdhury et al., “Virtual network embedding with
coordinated node and link mapping,” in IEEE INFOCOM 2009. Rio
de Janeiro, RJ, Brasil: IEEE, April 2009, pp. 783–791.

[7] L. R. Bays et al., “A toolset for efficient privacy-oriented virtual
network embedding and its instantiation on SDN/OpenFlow-based
substrates,” Computer Communications, vol. 82, pp. 13 – 27, 2016.

[8] R. de Oliveira and G. P. Koslovski, “A tree-based algorithm for
virtual infrastructure allocation with joint virtual machine and network
requirements,” International Journal of Network Management, vol. 27,
no. 1, pp. e1958–n/a, 2017, e1958 nem.1958.

