
When Cloud Virtual Machine Images
Need to Be Updated

Marco A. S. Netto, Marcos D. Assunção

Lakshminarayanan Renganarayana, Chris Young

IBM Research

{mstelmar,marcosda}@br.ibm.com, {lrengan,ccyoung}@us.ibm.com

Abstract—Updates to cloud images typically come in the form
of patches and either correct bugs and security vulnerabilities or
introduce new functionality. The complexity and effort required
to patch an image is much higher than what is required to patch
an instance. This is due to the risk of incorrectly modifying
configurations, breaking the cloud provisioning for the image
or preventing the correct operation of the management stack. In
a managed cloud, if a patch is not applied to an image it must
be applied to each instance of the image. This process results
in wastage of compute resources and causes the customer to
receive an initial instance that has not been tested by the cloud
provider. This paper proposes an algorithm to identify when an
image should be updated based on the frequency of instantiation
requests and the outstanding patches as actually experienced in
a production data centre.

I. INTRODUCTION

Infrastructure as a Service (IaaS) providers typically offer
a set of generic starter images which provide an effective base
for further customisation to a consumers’ workload. Cloud
consumers typically have the option to leverage community
constructed images or to build their own custom images.
The consumers’ goal is to find an image which most closely
matches their workload requirements, therefore reducing man-
ual effort associated with further image customisation.

The complexity of image management and governance
increases as each customer introduces their own unique re-
quirements [1]. The currency of software within an image
provides a challenging problem for both cloud provider and
consumer as neither party benefits from using outdated or
insecure software versions. Hence, a method is needed to assist
parties responsible for image currency to determine the most
appropriate frequency and method to apply software patches.
This paper helps address this challenge for the benefit of cloud
provider and consumer; an open issue not well explored in the
cloud image management literature [1]–[11].

This work introduces an algorithm that assists the parties
responsible for image currency to determine which images
should be updated with software patches at a point in time.
The algorithm considers several aspects of cost involved with
updating an image or dynamically updating each instance at
instantiation time. The algorithm is evaluated against historic
request data from a production data centre.

II. IMAGE UPDATING ALGORITHM

The process and costs associated with updating an instance
versus an image are quite different—as errors updating im-

ages may impact all provisioned virtual machines. These two
aspects are included in the proposed algorithm to determine
when images should be updated.

Algorithm 1: Pseudo-code for determining the maximum
time for updating an image.

Input: reqList, patchList, image
Output: maximumUpdateTime

1 iPatchList ← patchList.getPatches(image)
2 patchICost ← iPatchList.getImageCost(image)
3 patchRCost ← iPatchList.getReqCost(image)
4 nReqs ← 0
5 maximumUpdateTime ← 0
6 foreach time unit t do
7 maximumUpdateTime ← maximumUpdateTime + t
8 nReqs ← nReqs + reqList.getFutureReqs(image, t)
9 if patchICost < nFutureReqs * patchRCost * k then

10 return maximumUpdateTime

11 return -1

Algorithm 1 represents the pseudo-code for determining
the maximum update time when a set of updates need to be
applied onto an image, which runs in the system depicted in
Figure 1. The algorithm can be executed at fixed time intervals
or dynamically upon the management system receiving a new
patch. This alleviates the necessity to attempt to predict the
arrival times of future patches. The algorithm has the following
input variables:

• reqList: previous requests for provisioning instances.
Each request contains the required operating system,
software stack, and additional configuration parame-
ters;

• patchList: description and links to download and
apply operating system and software updates;

• image: image to be evaluated.

The algorithm starts by initialising iPatchList (Line 1),
which includes the patches from patchList that are deemed
relevant for the image. After that, the two update costs are set
(Lines 2–3): patchICost and patchRCost which represent
the cost of applying the patches iPatchList into the image and
into an instance provisioned from that image. Then a loop is
used to compare the image and instance update costs according
to the advancement of time (Lines 6–10)—such time can be

Fig. 1. The challenge from the cloud provider’s perspective is to determine when the cost of patching an image is less than the cost of dynamically patching
future cloud instances at provisioning time.

hours, days, weeks and so on. The number of future requests
nReqs is updated for each loop iteration (Line 8). Then a test
is executed to determine if the the cost for updating an image
is lower than the cost of updating all future instances from that
image (Line 9). If the cost is lower then return the maximum
update time (Line 10). A k factor is used to compensate for
the fact that the cost may vary for each instance provisioned
(Line 9).

It is important to note that the algorithm considers the
evaluation of a single image. However, a likely scenario would
be a system administrator who wants to know the maximum
update time for a set of images. For this scenario, two extra
variables for storing the total cost of updating all images and
the total cost for updating all instances could be compared, and
when the first is lower than the second, the maximum update
time is returned.

III. EVALUATION

The rationale behind the image updating algorithm is that
by predicting requests and using information on the costs
associated with updating an image or an instance, it is possible
to determine when an image should to be updated. This knowl-
edge reduces the time associated with applying patches to the
image and the impact on future instances based on the image.
The experimental results presented in this section demonstrate
that the principle is sound. We describe the experiment setup,
the metrics used to evaluate the image updating process, and
present the result analysis.

A. Experiment Setup and Metrics

The first key input parameter for the evaluation is the arrival
time of requests. In order to setup this value, we analysed
several requests for multiple Linux images of a production
data centre. The requests for each image have considerable
fluctuations, presenting some seasonality over the months, and
show higher demand in the second half of the year. Based on
this data, we setup the number of requests per day following
a Zipf distribution.

The second key input parameters are the arrival time and
size (in MBs) of the software updates. These values vary
according to the type of update (OS and software in general).

Therefore, based on the collected data of patches for linux
distributions and software stack such as DB2, IBM HTTP
Server, and Websphere, we modelled the patch arrival time
as a Zipf distribution and patch size as a normal distribution.

We also considered the risk of a patch breaking an image
(i.e. the resource provider needs to fix an instance created from
the image when it does not work as the customer expected).
As the image update algorithm depends on how accurate the
prediction of future requests is, we considered two scenarios
where the prediction (i) overestimates or (ii) underestimates
the number of future requests. The values of these and other
parameters are summarised in Table I.

Metrics. We considered the following metrics when evaluating
the proposed algorithm with the input parameters described in
this section:

• Wasted Time: Percentage of the wasted time com-
pared to the best approach, that is update the image
or update the future instances, as defined in Equation
1;

• Number of Days: Number of days in the future where
the image needs to be updated;

• Recovery Waste Cost: percentage of the amount of
time the instance was unable to be used due to a bad
image patch in relation to the maximum time when
the patches for the image need to be applied.

Wasted Time =

∣

∣

∣

n
∑

i=1

ImgPi −

m
∑

j=1

VMPj

∣

∣

∣

min
(n
∑

i=1

ImgPi,
m
∑

j=1

VMPj

)

(1)

Equation 1 is defined as the time cost difference between
updating the image and updating future instances divided by
their minimum value, where: n is the number of patches of
the image, m is the number of future requested instances that
will use the image, ImgP is the cost for applying a patch on
an image, and VMP cost of applying a patch on an instance.

TABLE I. SUMMARY OF EXPERIMENT PARAMETERS AND VALUES.

Parameter Value Description

ReqArrival Zipf (1.5) Request arrival time
VMPatchTime Normal (50,30) VM Patch time (secs)
ImgPatchTime Normal (100,30) Image Patch time (secs)
BreakRisk 0.05–0.5% Probability of image break
PredAccOver 0–300% Pred. accuracy overest.
PredAccUnder 0–99% Pred. accuracy underest.

B. Result Analysis

The first analysis considers the accuracy of the prediction
for future requests. As discussed earlier, this is a key parameter
as accuracy of the predictions is highly dependent on the data
centre and its workload. We analysed both overestimation and
underestimation of the number of future requests.

Overestimation of future requests. This is a scenario of
cautious management, where the value of the future number of
requests is overestimated. The higher the overestimation, the
earlier the day an image needs to be updated. This behaviour
is illustrated in Figure 2, which shows the average number
of days in the future (including the standard deviation bars)
when an image is updated as a function of the overestimated
number of requests that will use the image. The number of
days in the future when to update the image decreases with
the overestimation until it reaches a point where the algorithm
determines that the image needs to be updated on the “next
day”. Hence, with overestimation of requests, even with few
requests the image is updated more often.

The early image update can waste a considerable amount
of time and resources, as depicted in Figure 3. This figure
shows the wasted time of updating an image as a function of
the underestimated number of requests that will use the image.
We notice that when the overestimation is high, similar to the
number of days metric, the wasted time reaches a threshold.
This can be observed by comparing the standard deviation bars
under low and high overestimation. This happens because the
number of days in the future when the image needs to be
updated stops to reduce, getting closer to the “next day” phe-
nomenon. The results also show a tolerance of approximately
10% for the overestimation to determine the maximum time
to update the image.

0

5

10

0 50 100 150 200 250
Prediction Overestimation (%)

D
a
ys

 t
o
 U

p
d
a
te

 I
m

a
g
e

Fig. 2. Number of days in the future when an image is updated as a function
of the overestimated number of requests that will use the image.

0

50

100

150

200

0 50 100 150 200 250
Prediction Overestimation (%)

W
a
st

e
d
 T

im
e
 (

%
)

Fig. 3. Wasted time of updating an image as a function of the overestimated
number of requests that will use the image.

Underestimation of future requests. This is a scenario of
more relaxed management, where the number of future number
of requests is underestimated. In this case, the higher the
underestimation, the later an image is updated. This behaviour
is illustrated in Figure 4, where it shows the number of days
in the future when an image is updated as a function of the
underestimated number of requests that will use the image.
Note the difference from the overestimation scenario; here we
varied underestimation up to 99%, as the value of 100% repre-
sents that there will be no future requests. Underestimation has
a key difference of overestimation: depending on the quality
of the request arrival prediction, the algorithm may determine
that it will take months until the update is necessary; that is,
the impact on the number of days is very high, as we can
observe in the curve shown in Figure 4. Depending on the
scenario, this may be acceptable, but system administrators
may consider including a threshold for the days to update the
image.

The possibility of having long periods when the image is
not updated causes a considerable amount of time to be wasted
as depicted in Figure 5. This figure shows the wasted time of
updating instances as a function of the underestimated number
of requests that will use such an image. Similar to the number
of days metric, the wasted time follows an exponential curve
due to incorrect prediction of very small number of requests,
which results in many more instances to be updated, instead
of only updating the image that will generate such instances.
The results also show a tolerance of approximately 5% for the
underestimation to determine the maximum time to update the
image.

Risk of performing bad patches. Another factor we in-
vestigated is the impact of bad patches applied to images
on the subsequent provisioning time of instances. Figure 6
presents the recovery wasted time as a function of image
update probability failure. We varied the probability from
0.5 to 1.0. We notice that when there is a high risk of an
image update to compromise future instances, the time to
recover those instances may be considerably high. The results
presented here were obtained considering one day to detect
the error on an instance due to a bad patch on the image. The
recovery wasted time may be higher and more costly if the
time to detect a problem is long and the instances need to be
recreated.

20

40

60

80

100

0 20 40 60 80
Prediction Underestimation (%)

D
a
ys

 t
o
 U

p
d
a
te

 I
m

a
g
e

Fig. 4. Number of days in the future when an image is updated as a function
of the underestimated number of requests that will use the image.

0

200

400

600

800

0 20 40 60 80
Prediction Underestimation (%)

W
a
st

e
d
 T

im
e
 (

%
)

Fig. 5. Wasted time of updating instances as a function of the underestimated
number of requests that will use the image.

2

4

6

0.2 0.4 0.6 0.8 1.0
Probability of Future Instances Fail

R
e
co

ve
ry

 W
a
st

e
 C

o
st

 (
%

)

Fig. 6. Recovery wasted time as a function of image update probability
failure.

IV. FINAL REMARKS

Cloud images need to be maintained by applying patches
regularly in order to, for instance, avoid security vulnerabilities
that can compromise a customer’s resources and information;
or add new software features. The decision of when to patch
an image is not trivial as the additional complexity and time
required to patch an image must be balanced against that of
updating an instance.

This paper introduced an algorithm to assist the parties
responsible for image currency to determine which images
should be updated with software patches. The algorithm takes
into consideration several aspects of cost associated with

performing the update to either the image or to an instance
during its provisioning process.

Based on the evaluation results using data from a pro-
duction data centre and associated software configurations,
we identified the importance of knowing the actual costs
involved to update images and instances. As image updates are
more costly than instance updates, predicting future requests
is fundamental to determine how long the images can remain
out-of-date in order save work updating them. However, the
wasted cost by performing a bad decision on either updating
an image or updating an instance is highly dependent on the
prediction of future requests. The results presented in this
paper are representative for the workloads we selected to eval-
uate the image update algorithm. However, we discussed the
steps necessary to perform the analysis that can be leveraged
by image managers with different settings to perform more
effective decisions on when images need to be updated. This
is particularly important for managed clouds where customers
expect high levels of quality-of-service and quality of images
to provision their instances.

REFERENCES

[1] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and
V. Bala, “Opening black boxes: Using semantic information to com-
bat virtual machine image sprawl,” in Proceedings of ACM SIG-
PLAN/SIGOPS VEE, 2008, pp. 111–120.

[2] T. Garfinkel and M. Rosenblum, “When virtual is harder than real:
Security challenges in virtual machine based computing environments,”
in 10th USENIX HotOS, Berkeley, USA, 2005, pp. 20–20.

[3] W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang, and V. Bala,
“Always up-to-date: Scalable offline patching of vm images in a
compute cloud,” in ACSAC 2010, New York, NY, USA, 2010, pp. 377–
386.

[4] A. Kochut and A. Karve, “Leveraging local image redundancy
for efficient virtual machine provisioning,” in Proceedings of the
13th IEEE/IFIP Network Operations and Management Symposium
(NOMS’12), 2012.

[5] R. Filepp, L. Shwartz, C. Ward, R. D. Kearney, K. Cheng, C. C. Young,
and Y. Ghosheh, “Image selection as a service for cloud computing
environments,” in Proceeding of the IEEE Service-Oriented Computing
and Applications (SOCA’10), Perth, Australia, Dec. 2010, pp. 1–8.

[6] A. Ganguly, J. Yin, H. Shaikh, D. Chess, T. Eilem, R. Figueiredo,
J. Hansom, A. Mohindra, and G. Pacifici, “Reducing complexity of
software deployment with delta configuration,” in Proceedings of the
10th IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM’07), 2007, pp. 729 –732.

[7] M. D. Assuncao, M. A. S. Netto, B. Peterson, L. Renganarayana,
J. Rofrano, C. Ward, and C. Young, “Cloudaffinity: A framework for
matching servers to cloudmates,” in Proceedings of the 13th IEEE/IFIP
Network Operations and Management Symposium (NOMS’12), 2012.

[8] W. A. Jansen, “Cloud hooks: Security and privacy issues in cloud com-
puting,” in 44th Hawaii International Conference on System Sciences
(HICSS 2011), Jan. 2011, pp. 1–10.

[9] Y. Chen, V. Paxson, and R. H. Katz, “What’s new about cloud
computing security?” Berkeley, USA, Jan. 2010.

[10] G. Ammons, V. Bala, T. Mummert, D. Reimer, and X. Zhang, “Virtual
machine images as structured data: the mirage image library,” Proceed-
ings of the USENIX HotCloud 2011, Jun. 2011.

[11] R. Wartel, T. Cass, B. Moreira, E. Roche, M. Guijarro, S. Goasguen, and
U. Schwickerath, “Image distribution mechanisms in large scale cloud
providers,” in Proceedings of the IEEE Second International Conference
on Cloud Computing Technology and Science (CloudCom’10), 2010.

