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Abstract

Grids enable sharing, selection and aggregation of computational resources, storage
resources, and scientific instruments belonging to multiple institutions. Scientific col-
laborations routinely choose Grids to fulfil heavy computational requirements. Recent
evidence, however shows that most Grids work in isolation, and with different utilisation
levels.

This thesis explores mechanisms and technologies for enabling Grids to share re-
sources. It surveys key concepts and systems used to enable resource sharing among
physical organisations, and classifies existing systems considering their architectures, op-
erational models, resource control techniques, support for virtual organisations, and sup-
port for inter-Grid operation.

We present an architecture for enabling resource sharing between Grids, based on the
idea of peering arrangements between gateways that mediate access to the resources of
interconnected Grids. The gateways rely on resource-availability information obtained
from resource providers participating in the interconnected Grids; providers have their
local users, yet agree to provide resources to the Grid. We thus investigate site-level
provisioning techniques that enable providers to satisfy the requirements of their local
users and offer resources to a gateway, whereby the gateway can provision resources to
Grid applications and avoid contention. Simulation results show that for a Grid such as
DAS-2, a very small part of the jobs scheduled face resource contention (i.e. less than
0.5%), if providers inform the gateway about the resource availability every 15 to 30
minutes and use a provisioning strategy based on conservative backfilling.

Moreover, this thesis describes a mechanism by which gateways can share resources
under peak load conditions. The acceptance and redirection of requests is based on the
marginal cost of allocation. The mechanism is effective in balancing the load across
interconnected Grids and improves the response time of Grid applications.

This thesis also extends current provisioning techniques by presenting a model where
organisations can use resources from commercial providers to augment the capacity of
their clusters. This thesis proposes various strategies to utilise the resources from com-
mercial providers, and quantifies the cost of achieving performance improvements. A
strategy based on selective backfilling using resources from commercial providers yields
the best ratio of slowdown improvement to money spent.

The proposed resource provisioning strategies and the load sharing mechanism are
evaluated using discrete-event simulation. This thesis also realises the proposed archi-
tecture using virtual machines to accommodate user requests; resources allocated by one
gateway from another are used to run virtual machines.
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Chapter 1

Introduction

Advances in distributed computing have enabled the creation of national and international
Grids such as the TeraGrid [36, 55], Open Science Grid [144], Enabling Grids for E-
sciencE (EGEE) [65], APACGrid in Australia [134], K*Grid in Korea [139], NAREGI in
Japan [124], Garuda in India [145], E-Science Grid in the UK [96], OurGrid in Brazil [8],
Grid’5000 [21] and AuverGrid [106] in France, and DAS in the Netherlands [43]. Com-
posed of multiple resource providers, these Grids enable collaborative work and sharing
of computational resources, storage resources, and scientific instruments among groups
of individuals and organisations. These collaborations have been known as Virtual Or-
ganisations (VOs) [82].

For over a decade various technologies have enabled applications to be deployed on
these Grids, including Grid middleware such as Globus [79], Legion [37], UNICORE [3],
and gLite [57]; schedulers such as Application Level Schedulers (AppLeS) [18]; and re-
source brokers including Gridbus Resource Broker [186], Nimrod/G [30], Condor-G [84],
and GridWay [98].

Although these Grids have contributed to various sciences and disciplines, evidence
shows that they mostly work in isolation and with different utilisation levels [101]. Cur-
rent Grids are like “islands” with little or no resource sharing between them; a situation
starkly contrasted with the original vision of Grid computing, which imagined a single
global infrastructure providing users with computing power on demand [80]. Efforts to
address this issue include providing interoperability among different Grids and Grid mid-
dleware [89], and creating trust federations between Grids to grant users in one Grid easy
access to another.

Despite these interoperability efforts, enabling Grids to share their resources remains
a virtually untouched challenge. Boghosian et al. [20] highlight the lack of mechanisms
to enable the allocation or provisioning of resources from multiple Grids to applications.
They also describe three sample applications whose performance would significantly im-
prove if resources from multiple Grids were utilised. Studying the utilisation logs of the
DAS-2 [43] in the Netherlands and Grid’5000 [21] in France, Iosup et al. [101] showed
that there was a significant load imbalance between these Grids. Moreover, Orgerie et
al. [136] studied the power consumption of the Grid’5000 computing sites and showed
that the efficient management of resources can result in significant electricity savings. In
light of this evidence, it would seem that interconnecting and enabling resource sharing
between Grids offers great opportunities and benefits. However, enabling resource shar-
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2 Chapter 1. INTRODUCTION

ing between Grids is a complex task. Each Grid’s autonomy for capacity planning and
provisioning of resources to user communities exacerbates contention for resources and
dynamic demand within participant Grids.

This thesis provides an architecture for interconnecting Grids, and explores mecha-
nisms and techniques to allow sharing of resources between Grids; focusing on comput-
ing resources. The remaining part of this chapter elaborates the need for interconnecting
Grids, and describes the research problem, the objectives of this thesis, its contributions,
and its organisation.

1.1 Motivations for Interconnecting Grids

The ultimate goal of Grid computing is to enable the creation of an infrastructure that al-
lows scientists and practitioners to cope with the scale and complexity of both current and
next-generation scientific challenges [55, 64, 83]. To date, various national programs have
initiated e-Science projects to enable resource-sharing and collaboration among scientists.

Such Grids, however, generally follow restricted organisational models, wherein a
VO is created for a specific collaboration and all interactions and resource-sharing are
limited to within the VO. Further, an infrastructure is often set up to realise the techni-
cal requirements of a particular user community, which can differ considerably from the
requirements of another community. Thus, these factors have generally resulted in dis-
persed Grid initiatives and the creation of disparate Grids with little or no resource sharing
between them. The bottom layer in Figure 1.1 illustrates this scenario of dispersed Grids
around the world. Resource sharing between Grids is needed to provide users with a
larger infrastructure upon which they can deploy applications that adapt, by growing and
shrinking in terms of resource consumption as depicted by the top layer in Figure 1.1.

Grids could enable these applications just as execution environments are enabled in
other large-scale testbeds. Large-scale testbeds such as PlanetLab [141] present an inter-
esting model for providing “slices” of resources to users, so they can deploy their applica-
tions. In turn, these applications can execute in isolation from other applications running
on the same physical infrastructure. PlanetLab achieves this by allocating resources in a
centralised manner and performing resource control using the concept of virtual resources
or virtual machines. Grid computing, however, generally carries out resource control on
a job basis, wherein users encapsulate their applications as jobs that are routed to the
resources where they are executed. Moreover, Grids have autonomy to implement and
enforce their own resource usage policies.

In this thesis, we argue that an architecture and mechanisms based on the idea of peer-
ing arrangements would enable resource provisioning and sharing between Grids. Internet
Service Providers (ISPs) establish peering agreements to allow traffic into one another’s
networks [12, 123, 132]. The middle layer of Figure 1.1 illustrates the idea of resource
provisioning between Grids through peering arrangements. However, as described earlier,
some of the issues involved in providing resources from multiple Grids to applications
arise from different Grids, and usually parts of a Grid, operating under different adminis-
trative domains. Moreover, in contrast to other large-scale testbeds, Grids are composed
of autonomous resource providers, which are part of a Grid but also need to respect the
resource demands of their local users.
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Figure 1.1: Abstract view of the interconnection of Grids.

1.2 Research Problem and Objectives

This thesis tackles the challenge of how Grids can share resources, thus increasing their
overall capacity and providing benefits to their users, without disrespecting the demands
of the involved providers’ local users.

Towards that end, this thesis investigates mechanisms for resource sharing between
Grids to enable deploying applications across Grids, recognising that Grid users generally
contend for resources1 with the provider’s local users. Resource sharing between Grids
introduces another level of contention: between users local to the interconnected Grids
and users external to those Grids.

Mechanisms for resource sharing between Grids should provide techniques to min-
imise the impact of these contentions. To achieve that, this thesis investigates strategies
that providers can use to allocate resources to Grids, while providing guarantees over
access to resources further shared by the interconnected Grids.

1.2.1 Objectives

Based on the challenge described above, we delineated the following objectives:

1. Provide an architectural model that supports the interconnection of Grids and re-
source sharing between interconnected Grids.

1This thesis uses the term contention to represent a situation where two users try to use a particular
resource over the same period.
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2. Investigate resource provisioning techniques to deal with the resource contention
that can arise within the interconnected Grids.

3. Investigate resource sharing mechanisms between Grids that benefit the intercon-
nected Grids, such as improve performance of Grid applications.

1.3 Methodology
To evaluate the mechanisms proposed in this thesis, we perform discrete-event simula-
tions. Simulations provide a controllable environment for repeatable experiments. More-
over, as the research community uses Grids as production environments to run their ap-
plications or as testbeds, it would be difficult to actually vary the computing resources’
configuration to experiment with different provisioning mechanisms, even if system ad-
ministrators could be induced to relinquish such privileges.

We realised the proposed architecture by designing a system prototype that uses vir-
tual machines to accommodate user requests [15]. This thesis describes the system that
enables the allocation of virtual machines from multiple computing sites, or Grids. The
methodology used to investigate each proposed mechanism is described in the respective
chapters.

1.4 Contributions
Based on the objectives defined above, this thesis makes the following contributions:

1. It introduces a provisioning architecture that enables resource sharing between Grids,
and deploying applications across Grids. The proposed architecture uses peering
arrangements between gateways that mediate access to the resources of intercon-
nected Grids; offering a framework for resource provisioning within Grids.

2. It investigates several site-level provisioning strategies for allocating resources to
intra-Grid applications. Providers have their local users, yet agree to provide re-
sources to the Grid. Site-level provisioning aims to minimise contentions between
providers’ local users and Grid users.

Experimental results show that for a Grid similar to DAS-2 [43], a strategy based
on conservative backfilling should suffice to provide resources to the Grid. Based
on multiple resource partitions and load estimates, the proposed strategy shows
improved job slowdown in scenarios where the providers inform the gateway about
the availability at long intervals (i.e. a few hours). Thus, the multiple resource
partitions are a better option if long intervals are considered to gather the resource
availability required for provisioning decisions.

3. It presents a mechanism for resource sharing between Grids. According to the pro-
posed mechanism, Grids can share resources under peak load conditions. Grids
have pre-defined contracts that specify the terms of the interconnection, such as the
price paid for allocating resources from one another. The acceptance and redirec-
tion of requests takes into account the marginal cost of resource allocation. This
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load-sharing mechanism relies on resource-availability information provided by the
site-level provisioning techniques. Specifically, we select three provisioning strate-
gies, namely the single-partition with conservative backfilling [128], the multiple-
partition strategy with conservative backfilling and the multiple-partition strategy
with load estimates.

Simulation results show that the proposed mechanism effectively balances the load
among the interconnected Grids. Results also demonstrate that interconnected Grids
benefit one another, as the Average Weighted Response Time (AWRT)2 improves
considerably for both Grid users’ requests and requests from the providers’ local
users. Even stand-alone Grids showed improvements in AWRT for both Grid and
local jobs using a site-level provisioning strategy based on multiple resource par-
titions and conservative backfilling. In some scenarios, the time for Grid resource
exchange negotiations impacts the AWRT of Grids with the lightest load. These
Grids face small increases in job response time, which are introduced by the nego-
tiation mechanism.

4. Availability of virtual machine technologies has increased in recent years, offering
benefits such as performance isolation, environment isolation, and server consolida-
tion. The proposed architecture has been realised using virtual machine systems to
accommodate user requests. Resources from one Grid, allocated by another Grid,
are used to run virtual machines, and the system allows deploying virtual machines
on commercial resource providers, who use virtualisation solutions to manage their
infrastructure.

5. The maturity of virtual machine and network technologies has led to the emergence
of commercial infrastructure providers, who offer virtually unlimited resources to
end-users on a pay-as-you-go basis. This model is generally termed as “Cloud
Computing” [9, 193] as the resources are on a “Cloud” whose physical infrastruc-
ture is unknown to the users. The emergence of these commercial infrastructure
providers, their economies of scale, and the increasing costs of operating a Grid
infrastructure may contribute to Grids comprising commercial and non-commercial
infrastructures [48].

This thesis investigates a scenario where the capacity of an organisation’s cluster is
extended by leasing Grid resources from a commercial provider. It proposes and
evaluates various scheduling strategies that consider the use of resources from com-
mercial providers, in order to understand how these strategies achieve a balance
between performance and usage cost, and how much they improve the requests’ re-
sponse times. We evaluate the cost of performance improvements, given the money
spent for using commercial resources. Simulation results show that different strate-
gies can yield different ratios of response time improvement to money spent. A
strategy based on selective backfilling [172] yields the best ratio of slowdown im-
provement to money spent. A deadline-aware strategy based on conservative back-
filling [128] is the preferable option when resources from the commercial provider
are used to minimise rejected requests.

2The weight is given by the job’s resource consumption. This metric is explained in Chapter 5.
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1.5 Thesis Organisation
The core chapters of this thesis derive from various research papers published during the
course of the PhD candidature. The interrelationship among the chapters and the fields
to which they are related are shown in Figure 1.2, and the remaining part of this thesis is
organised as follows:

Multiple Site 
Resource 

Provisioning
(Chapter 4)

InterGrid Resource 
Provisioning
(Chapter 5)

Realising
the InterGrid
(Chapter 7)

Mixing Academic and
Commercial 

Resource Providers
(Chapter 6)

Resource
Provisioning
within Grids

Resource Sharing
between Grids

Conclusions
(Chapter 8)

InterGrid
Architecture
(Chapter 3)

Principles 
and 

Positioning
(Chapter 2)

Figure 1.2: Organisation of this thesis.

• Chapter 2 presents background and the literature review on systems and mecha-
nisms used by Grids to enable resource sharing among participating organisations.
It therefore positions the thesis in regards to existing work. Chapter 2 derives from:

– M. D. de Assunção and R. Buyya, Architectural Elements of Resource Shar-
ing Networks, The Handbook of Research on Scalable Computing Technolo-
gies, IGI Global, 2009 (in print).

• The proposed architecture used for resource sharing between Grids is described in
Chapter 3, using the concept of peering arrangements between Grids. Chapter 3 is
partially derived from:

– M. D. de Assunção, R. Buyya and S. Venugopal, InterGrid: A Case for In-
ternetworking Islands of Grids, Concurrency and Computation: Practice and
Experience (CCPE), Vol. 20, Issue 8, pp. 997-1024, Wiley Press, New York,
USA, June 2008.

• Chapter 4 describes site-level provisioning strategies and accompanying availability
information used to provide resources to Grid applications. Chapter 4 derives from:

– M. D. de Assunção, W. Streitberger, T. Eymann, and R. Buyya, Enabling
the Simulation of Service-Oriented Computing and Provisioning Policies for
Autonomic Utility Grids, Proceedings of the 4th International Workshop on
Grid Economics and Business Models (GECON 2007), LNCS, Vol. 4685,
Springer-Verlag, Berlin, Germany), Aug. 28, 2007, Rennes, France.
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– M. D. de Assunção and R. Buyya, Performance Analysis of Multiple Site
Resource Provisioning: Effects of the Precision of Availability Information,
Proceedings of the 15th International Conference on High Performance Com-
puting (HiPC 2008), pp. 157-168, Bangalore, India, 17-20 Dec. 2008.

• A mechanism for resource sharing between Grids is proposed in Chapter 5. This
mechanism is based on requests’ marginal cost of allocation and uses the site-level
provisioning techniques proposed in Chapter 4. Chapter 5 is derived from:

– M. D. de Assunção and R. Buyya, A Cost-Aware Resource Exchange Mech-
anism for Load Management across Grids, Proceedings of the 14th Interna-
tional Conference on Parallel and Distributed Systems (ICPADS 2008), pp.
213-220, Melbourne, Australia, 8-10 Dec. 2008.

– M. D. de Assunção and R. Buyya, Performance Analysis of Allocation Poli-
cies for InterGrid Resource Provisioning, Information and Software Technol-
ogy, Elsevier, Vol. 51, Issue 1, pp. 42-55, Jan. 2009.

• Chapter 6 describes and evaluates scheduling strategies that enable the use of com-
mercial providers to extend the capacity of academic or non-commercial clusters
using the architecture described in Chapter 3. Chapter 6 derives from:

– M. D. de Assunção, A. Di Costanzo, and R. Buyya, Evaluating the Cost-
Benefit of Using Cloud Computing to Extend the Capacity of Clusters, Pro-
ceedings of the International Symposium on High Performance Distributed
Computing (HPDC 2009), Munich, Germany, 11-13 Jun. 2009.

• Chapter 7 describes how the architecture proposed in Chapter 3 has been realised.
We detail the system implementation and how it uses virtual machine systems to
accomplish the resource provisioning goals. Both the simulation models and the
real system use a data structure to store the resource availability information. De-
tails on the data structure used to carry out request admission control and to store
the resource availability information are given in Appendix A.

• We present general considerations, conclusions and future directions in Chapter 8.





Chapter 2

Principles and Positioning

This chapter discusses approaches for enabling resource allocation across Grids and other
large-scale testbeds. Focusing on allocation of computational resources, the chapter cri-
tiques existing systems according to their architectures, operational models, support for
the life cycle of Virtual Organisations (VOs), and techniques for resource control. We
also present key background information to facilitate a better understanding of the topics
addressed in the remaining chapters, and position the thesis in regards to related work.

2.1 Grid Computing
Grids enable sharing, selection and aggregation of computational resources, storage re-
sources, and scientific instruments belonging to multiple institutions [80]. Several scien-
tific collaborations have used Grid infrastructure for their heavy computational require-
ments. A layered view of the Grid architecture is depicted in Figure 2.1.

It is worth noting that although Grids can comprise various types of resources, this the-
sis focuses on computational resources, hence a Grid is viewed as a collection of clusters
running local resource management systems.

From bottom to top, the key layers and components of the depicted architecture are:

1. Grid Fabric/Distributed Resources: this layer represents resources distributed
in the Grid: computers, clusters of computers, databases, sensors, and scientific
instruments. As described in greater detail later, clusters can run a variety of local
resource management systems such as Condor [117], the Portable Batch System
(PBS) [188], and Sun Grid Engine (SGE) [25].

2. Core Grid Middleware: this layer offers core services such as remote process
management, resource directories and discovery, security, and resource reservation.
The Grid middleware also aims to provide standard interfaces to utilise underlying
Grid resources [37, 79].

3. Grid Resource Management Systems: this layer contains high-level or user Grid
middleware, including programming models, development environments, resource
brokers, and meta-schedulers for managing resources and scheduling application

9
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Figure 2.1: Layered view of Grid architecture.

jobs for execution on Grid resources. The meta-schedulers utilise the local resource
management systems via the interfaces provided by the Core Grid middleware.

4. Applications: comprises applications,1 and Web portals that allow users to execute
and monitor their experiments.

2.2 Job Scheduling in Clusters
User applications executed on clusters of computers or supercomputers are typically en-
capsulated as batch jobs that require one or more system processors. Deciding where
and when to run the users’ jobs is termed as scheduling, and the entity responsible for
scheduling jobs is commonly termed the batch scheduler, or simply cluster scheduler.
Examples of cluster schedulers include PBS [188], SGE [25], the MAUI scheduler [104],
and OAR [32].

This thesis uses the term Local Resource Management System (LRMS) to refer to
a cluster scheduler. The rest of this section describes job backfilling schemes, multiple

1These applications are typically developed using the Grid programming models provided by the high-
level Grid middleware
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resource partitions, and advance reservations.

2.2.1 Job Backfilling
Job scheduling in a cluster can be viewed in terms of a 2D chart with time along the x axis
and number of processors along the y axis (Figure 2.2). Each job is a rectangle whose
length is the job’s runtime and height is the number of processors required. This thesis
uses this simple representation to illustrate the proposed provisioning schemes. One way
of scheduling jobs that arrive in the system is to use a First Come First Served (FCFS)
policy, however this approach can lead to low resource utilisation.

Job 1

Job 2

Job 3

Job 4

TimeCurrent
Time

Job 5

Scheduling Queue

Pr
oc

es
so

rs

Job 6 Job 7

Job currently
in execution

Waiting job for
which a reservation
has been granted

Figure 2.2: Graphical representation of a scheduling queue.

Current LRMSs generally use optimisations to the FCFS policy, such as job backfill-
ing [116, 128]. Jobs are queued for execution in the order they arrive. Backfilling involves
slotting in later jobs (i.e. further back in the queue) to use available resources without de-
laying other waiting jobs. This technique improves job response time, maximises resource
utilisation, and reduces scheduling queue fragmentation. Extensive literature exists on job
backfilling [114, 116, 128, 162, 172, 180, 182]. The next sections describe relevant job
backfilling techniques.

Conservative Backfilling

A common term used for a scheduled job under backfilling is that of a reservation. A job
is granted a reservation when its start time is defined (i.e. a place in the 2D chart has been
found). Under conservative backfilling, a job can be brought forward and execute earlier
if it does not delay any other job in the waiting queue [128].

Aggressive Backfilling

Aggressive backfilling, also known as EASY backfilling, brings forward a job and starts
execution if it does not delay only the first job in the waiting queue – termed pivot job.
That is, only the job at the head of the waiting queue is granted a reservation [116]. Under
aggressive backfilling, the schedule contains the expected completion of running jobs and
the start time of the pivot job only. Some schedulers, such as Maui [104], allow the
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system administrator to configure the maximum number of pivots, which in turn enables
the scheduler to maintain the start and expected completion times of up to the maximum
number of pivot jobs [104]. For example, if the maximum number of pivots is set to 5,
and there are 5 jobs waiting in the queue, a 6th job that just arrived is used to backfill only
if it does not delay any of the 5 pivot jobs. If the maximum number of pivots is very large,
the scheduler becomes conservative backfilling.

Selective Backfilling

Selective backfilling grants reservations to jobs that have waited long enough in the queue
[172]. A threshold parameter computed as the result of a response time related metric,
such as job slowdown [74],2 generally defines how long a job should wait in the queue.

2.2.2 Multiple Resource Partitions
Work on multiple resource partitions and priority scheduling has shown to reduce the
job slowdown compared to scheduling based on aggressive backfilling [114]. Under this
scenario, the scheduler divides the resources available into partitions and assigns jobs to
these partitions according to criteria specified by the system administrator. A partition can
borrow resources from another when the latter is not using them, and the scheduler allows
such borrowing. If aggressive backfilling is used, for example, each partition performs the
scheduling and has its own pivot job. One partition A can borrow resources from another
partition B if doing so will not delay the pivot job of B.

2.2.3 Advance Reservations
With the traditional FCFS policy and backfilling strategies, the start time of a job de-
pends on the cluster’s workload and is not under the user’s control. However, users in
general appreciate guarantees of resource availability to ensure their jobs meet deadlines;
severe weather forecasting is an example of deadline-constrained application. Advance
reservation mechanisms can provide guarantees about the application start and completion
times as they allow users to request resources at specific times [169, 170]. A provisioning
method based on reservations offers the guarantees required for deadline-constrained ap-
plications [167]. LRMSs such as LSF, PBS Pro and Maui can support advance reservation
requests [120].

However, Smith et al. [169] and Margo et al. [121] showed that the waiting time
of normal workload increases when reservations are allowed and the increase depends
on how reservations are supported. The use of advance reservations can also lead to a
scenario of low resource utilisation if users do not use the resources they reserve. A study
by Snell et al. [170] on the impact of advance reservations meta-scheduling produced
similar findings; the resource utilisation decreases as the number of reservations for jobs
from the meta-scheduler increases.

Some techniques can minimise the impact of advance reservations on normal work-
load. These techniques include:

2Slowdown is the ratio of the response time on a loaded system to the response time on a dedicated
system.
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• limiting the number of reservations allowed in the system [121];

• increasing the laxity of advance reservation requests, where laxity is the difference
between a request’s deadline and the time the request would finish executing if it
started at its start time [71];

• enabling flexible reservation requests that are elastic in properties such as start-time,
duration, and number of processors required [62, 130, 153, 154, 174]; and

• overbooking resources [175, 183].

Guarantees are also essential to jobs that require co-allocation of resources from mul-
tiple clusters. Several solutions for co-allocating Grid resources have been proposed in
the literature. The Globus Architecture for Reservation and Allocation (GARA) [81] ex-
tended a previously proposed co-allocation architecture [41] by introducing agents re-
sponsible for discovering and reserving a set of resources that can satisfy the user’s re-
quirements. A co-reservation request returns a handle that is then passed to a co-allocation
agent in charge of allocating the reserved resources. Anand et al. [5] proposed a multi-
stage co-allocation strategy based on resource hierarchies. The strategy can separately
handle small co-allocation requests at lower levels of the hierarchy, thus not all resources
need to be available at the time a job is executed. In addition, meta-schedulers and brokers
supporting co-allocation of resources have been designed [62, 125, 189]. Although co-
allocation of resources may be required by some Grid applications and can bring benefits,
we do not aim to address co-allocation issues in this thesis.

2.3 Job Scheduling in Grids

Several of the organisational models used within existing Grids are based on the idea of
VOs. The VO scenario is characterised by resource providers offering different shares of
resources to different VOs via an agreement or contract; these shares are further aggre-
gated and allocated to users and groups within each VO on a needs basis. The problem
of managing resources within VOs is further complicated by the fact that resource control
is commonly performed on a job basis. Providers generally contribute clusters of com-
puters managed by LRMSs, such as those described in Section 2.2. Grid Resource Man-
agement Systems (GRMSs) schedule Grid users’ applications and allocate the resources
contributed by providers. A GRMS comprises components such as:

• Meta-schedulers, which communicate with LRMSs to place jobs at the provider
sites;

• VO-schedulers that allocate resources considering how providers and users are or-
ganised in virtual organisations [52]; and

• Resource brokers, which represent users or organisations, and schedule and manage
job execution on their behalf.
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These components interact with providers’ LRMSs either directly or via interfaces
provided by the Grid middleware. The Grid schedulers can communicate with one another
in various ways, such as via sharing agreements, hierarchical scheduling, and Peer-to-
Peer (P2P) networks. We discuss GRMSs in Section 2.4 and classify existing systems
according to their support for the life cycle of VOs, their resource control techniques, and
the mechanisms for inter-operation with other systems.

2.4 Grid Resource Management Systems

Previous work has classified systems according to their architectures, operational models
and scheduling techniques [29, 35, 101]. We extend these classifications by including
a new operational model. Moreover, systems with similar architecture can still differ in
terms of the mechanisms employed for resource sharing, the self-interest of the system’s
participants, and the communication model.

A Grid system can use decentralised scheduling wherein schedulers communicate
their decisions with one another in a co-operative manner, thus guaranteeing the maxi-
mum global utility of the system. Alternatively, a scheduler/broker may represent a par-
ticular user community within the Grid, can have contracts with other schedulers in order
to use the resources they control, and allocate resources that maximise its own utility, or
achieved profit. In this section we classify the arrangements between schedulers. Further-
more, systems can also differ with regard to their resource control techniques and support
for different stages of the VO life cycle; therefore this section also classifies resource con-
trol techniques. Section 2.5 discusses the systems’ support for virtual organisations. The
attributes of GRMSs and the taxonomy are summarised in Figure 2.3.

2.4.1 Architecture and Operational Models of GRMSs

Grid systems can have schedulers and brokers organised in various manners. Classifi-
cation by architectural model is summarised in Table 2.1. Iosup et al. [101] and Buyya
et al. [29] considered a multiple cluster scenario and classified the architectures possibly
used as GRMSs in the following categories:

• Independent clusters: each cluster has its LRMS and there is no meta-scheduler
component, i.e. users submit their jobs to the clusters of the organisations to which
they belong or on which they have accounts. We extend this category by including
single-user Grid resource brokers; in which the user sends their jobs to a broker,
who submits them on their behalf to clusters the user can access.

• Centralised meta-scheduler: users forward jobs to a centralised entity, which
sends the jobs to the clusters at which they execute. The centralised component
is responsible for determining which resources to allocate to the job and, in some
cases, for migrating jobs if the load conditions change.

• Hierarchical meta-scheduler: schedulers are organised in a hierarchy, with jobs
arriving either at the root of the hierarchy or at the LRMSs.
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Figure 2.3: Taxonomy on Grid resource management systems.

• Decentralised meta-scheduler: clusters can share with one another jobs that arrive
at their LRMSs. Links can be defined either in a static manner (i.e. by the system
administrator at the system start-up phase) or dynamically (i.e. peers are selected
dynamically at runtime).3

• Hybrid decentralised/hierarchical meta-scheduler: each Grid site is managed by
a hierarchical meta-scheduler. Additionally, the root meta-schedulers can share the
load with one another.

This comprehensive classification captures the main forms through which schedulers
and brokers can be organised in Grids and large-scale testbeds. However, some categories
can be extended. For example, site schedulers can be organised in several decentralised
ways and use various mechanisms for resource sharing, such as a mesh network in which
contracts are established between schedulers [86, 102] or a P2P network with a bartering-
inspired economic mechanism for resource sharing [6].

Systems are also heterogeneous regarding their operational models, or the mechanism
that ensures jobs entering the system arrive at the resource in which they run. We use and
extend the classification proposed by Iosup et al. as follows:

3Grit [91] discusses the types of contracts that schedulers (or brokers) can establish with one another.
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Table 2.1: Architectural models of Grid resource management systems.

Model Architecture Example Systems

Independent clusters
Portable Batch System
(PBS), Sun Grid Engine
(SGE)

Centralised
meta-scheduler

EGEE Workload
Management Service
(WMS), KOALA,
PlanetLab

Hierarchical
meta-scheduler

Computing Center Software
(CCS)

Decentralised OurGrid, Askalon, Shirako

Hybrid of
decentralised and
hierarchical

Delegated Matchmaking

• Job routing: schedulers route jobs from the arrival point to the resources where
they run using a push operation (scheduler-initiated routing).

• Job pulling: resources pull jobs from a higher-level scheduler (resource-initiated
routing).

• Matchmaking: the resource manager connects jobs and resources, acting as a bro-
ker to match requests from users and availability from resources.

• Job routing/pulling hybrid: systems use a job pool to (or from) which jobs are
pushed (or pulled) by site busy (or unoccupied) LRMSs [90].

2.4.2 Arrangements between Brokers
In decentralised or semi-decentralised architectures, brokers and schedulers can establish
various types of communication arrangements. It is important to distinguish the way
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links between sites are established and their communication pattern from the mechanism
used for negotiating the resource shares. We classify existing systems according to the
communication model as follows:

• P2P network: the sites of the Grid are peers in a P2P network, and they use the
network to locate sites where the jobs can run [7, 27].

• Bilateral sharing agreements: sites establish bilateral agreements through which a
site can locate another suitable site to run a given job. The redirection or acceptance
of jobs occurs only between sites that have a sharing agreement [67].

• Shared spaces: sites co-ordinate resource sharing via shared spaces such as feder-
ation directories and tuple spaces [90, 149].

• Transitive agreements: similar to bilateral agreements, however, a site can utilise
resources from another site with which it has no direct agreement [86, 102].

2.4.3 Resource Sharing Mechanisms
Although existing work can present similar communication and organisational models for
schedulers, the resource sharing mechanisms can be different. The schedulers or brokers
can use mechanisms for resource sharing from the following categories:

• System centric: the mechanism aims to maximise the overall utility of the partici-
pants. Such mechanisms aim, for example, to balance the load between sites [101]
and prevent free riding [6].

• Site centric: brokers and schedulers strive to maximise the utility of the participants
within the site they represent without the explicit goal of maximising overall system
utility [27, 148].

• Self-interested: schedulers/brokers act with the goal of maximising their own util-
ity, generally given by profit, yet satisfying the requirements of their users. They
also do not take into account the utility of the whole system [102].

2.4.4 Resource Control Techniques
Recently, organisations have deployed resource managers that allow the partitioning of
physical resources and the allocation of raw resources which users can customise with the
operating system and software they prefer. Virtualisation technologies such as Xen [15,
137] and VMWare4 make this partitioning possible.

The emergence of virtualisation technologies has resulted in the creation of testbeds
where different communities can access multiple-site slices (i.e. multiple-site containers)
and customised virtual clusters [38, 77, 108, 141]. Slices run concurrently, isolated from
one another. This type of resource control is termed here as a container model. Most of the
existing Grid middleware employ a job model in which jobs are routed until they reach the
sites’ LRMSs for execution. Both models can co-exist; thus an existing Grid technology

4http://www.vmware.com/



18 Chapter 2. PRINCIPLES AND POSITIONING

can be deployed in a workspace enabled by container-based resource management [127,
146]. We classify systems in the following categories:

• Job model: this is the model currently utilised by most Grid systems. Jobs are
directed or pulled across the network until they arrive at the nodes where they run.

• Container-based: systems in this category can manage a cluster of computers
within a site by means of virtualisation technologies [38, 108]. Resources are bound
to virtual clusters or workspaces according to a user’s demand. They commonly
provide an interface through which one can allocate a set of nodes, generally virtual
machines, and configure them with the operating system and software of choice.

– Single-site: these container-based resource managers allow the user to create
a customised virtual cluster using shares of the physical machines available at
the site. These resource managers are termed here as single-site because they
usually manage the resources of one administrative site [38, 76]. However,
with proper extensions they can enable container-based resource control at
multiple sites [127].

– Multiple-site: utilising the features of single-site container-based resource
managers to create networks of virtual machines on which an application or
existing Grid middleware can be deployed [146]. These networks of virtual
machines are termed here as multiple-site containers because they can com-
prise resources bound to workspaces at multiple administrative sites [102, 146,
156, 164]. These networks of virtual machines are also referred to as virtual
Grids [97] or slices [141].

Some systems such as Shirako [102] and VioCluster [157] provide container-based
resource control. Shirako also offers resource control at the job level by providing a
component that is aware of the resources leased [146]. This component recommends
which site can execute a given job.

2.5 Virtual Organisations
The idea of user communities or VOs underlies several of the organisational models
adopted by Grid systems and guides many efforts for fair resource allocation within
Grids. However, existing systems are heterogeneous in terms of the VO awareness of
their scheduling and resource allocation mechanisms. One may advocate that several sys-
tems, not explicitly designed to support VOs, are suitable for resource management within
a VO, however we restrict ourselves to classify systems according to the:

• VO awareness of their resource allocation and scheduling mechanisms; and

• Provision of tools for handling different issues related to the VO life cycle.

The life cycle of a VO comprises four distinct phases namely creation, operation,
maintenance, and dissolution. During the creation phase, an organisation looks for col-
laborators and then selects a list of potential partners to start the VO. The operation phase
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involves resource management, task distribution, and usage policy enforcement [51, 192].
The maintenance phase deals with the adaptation of the VO, such as allocation of addi-
tional resources according to its users’ demands, while VO dissolution involves legal and
economic issues such as determining the success or failure of the VO, intellectual prop-
erty, and revocation of access and usage privileges. Our criteria for classifying VOs are
presented in Figure 2.4.

For the VO awareness of scheduling mechanisms, we can classify the systems as:

• Multiple VOs: those mechanisms that perform scheduling and allocation consider-
ing the various VOs existing within a Grid.

• Single VO: those mechanisms suitable for job scheduling within a VO.

Furthermore, the Grid computing community has used the idea of VO in slightly dif-
ferent ways. For example, in the Open Science Grid (OSG) [144], VOs are recursive and
may overlap.

Attributes of
VOs

Dynamism

Goal-orientation

Duration

Maintenance

Policy enforcement

Facilitator

Static

Dynamic

Stationary

Mobile

Hybrid

Targeted

Non-targeted Short-lived

Medium-lived

Long-lived

Centralised

Decentralised

Star or hub

Democratic or peer-to-peer

Chain

Hierarchical
Hierarchical

Market-like

Figure 2.4: Taxonomy of Grid facilitated virtual organisations.

With regard to dynamism, we classify VOs as:

• Static: although Grid computing is considered an enabler for dynamic VOs, it has
been used to create more static and long-term collaborations such as APAC [134],
EGEE [65], and the UK e-Science Centre [96]. A static VO has a pre-defined
number of participants and its structure does not change over time.

• Dynamic: a dynamic VO presents a number of participants that changes constantly
as the VO evolves [195]. New participants can join, whereas existing participants
may leave. A dynamic VO can be:
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– Stationary: composed of highly specialised resources including supercom-
puters, clusters of computers, personal computers, and data resources. The
components of the VO are not mobile.

– Mobile: composed of mobile resources such as Personal Digital Assistants
(PDAs), mobile phones, and personal computers, and the VO is highly respon-
sive and adapts to different contexts [195]. Mobile VOs are found in disaster
handling and crisis management situations. A VO can be hybrid, having both
stationary and mobile components.

Considering goal-orientation, we divide VOs into two categories:

• Targeted: an alliance or collaboration created to explore a market opportunity or
achieve a common research goal. A VO for e-Science collaboration is an example
of a targeted VO as the participants have a common goal [96].

• Non-targeted: characterised by the absence of a common goal; it generally com-
prises participants who pursue different goals, yet benefit from the VO by pooling
resources. This VO is highly dynamic because participants can leave when they
achieve their goals.

In respect to the duration of VOs, they are typically of the following types:

• Short-lived: lasts for minutes or hours.

• Medium-lived: lasts for several days or weeks. For example, a scientist who needs
to carry out experiments that take several days to finish could start a medium-lived
VO. The experiments may require input data and the scenario may become simpler
if the VO model is used; the VO is not required as soon as the experiments have
been carried out.

• Long-lived: lasts for several months or years. For example, a long-lived VO could
be formed to explore a market opportunity (goal-oriented) or pool resources to
achieve disparate objectives (non-targeted).

As discussed earlier, the formation and maintenance of a VO present several chal-
lenges. Previous work has tackled these challenges in different ways, which in turn have
created different formation and maintenance approaches. We classify the formation and
membership, or maintenance, as:

• Centralised: a trusted third party, such as OSG [144] and the Enabling Grids for
E-SciencE [65], controls the formation and membership of a centralised VO. OSG
provides an open market where providers and users can advertise their needs and
intentions; a provider or user may form a VO for a given purpose. EGEE provides
a hierarchical infrastructure to enable the formation of VOs.

• Decentralised: no third party is responsible for enabling or controlling the for-
mation and maintenance. This kind of VO can become complex; they require the
negotiation of Service Level Agreements (SLAs) among multiple participants. In
addition, the monitoring of SLAs and members’ commitment to the VO are diffi-
cult to control. The VO also needs to self-adapt when participants leave or new
participants join.
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Regarding the enforcement of policies, VOs can follow different approaches, such as
hub or democratic. This is also termed as topology. Katzy et al. [107] classify VOs in
terms of topology, identifying the following types: chain, star or hub, and peer-to-peer.
Sairamesh et al. [159] identify business models for VOs; which are analogous to topolo-
gies. However, by discussing the business models for VOs, the authors are concerned
with a larger set of problems, including enforcement of policies, management, trust and
security, and financial aspects. We classify the enforcement and monitoring of policies as
star or hub, democratic or peer-to-peer, hierarchical, and chain.

Some projects such as OSG [144] and EGEE [65] aim to establish consortiums or
clusters of organisations, which in turn allow the creation of dynamic VOs. Although not
very related to the core issues of VOs, they aim to address an important problem: the
establishment of trust between organisations and the means for them to look for and find
potential partners. These consortiums are classified as hierarchical and market-like. A
market-like structure is any infrastructure that offers a market place that organisations can
join, and show interest in either starting a new collaboration or accepting to participate in
an ongoing collaboration. These infrastructures may make use of economic models such
as auctions, bartering, and bilateral negotiations.

2.6 An Investigation of Existing Work

This section investigates relevant work in greater detail. First, it describes a list of systems
with decentralised architectures. Second, it presents systems of hierarchical structure,
resource brokers, and meta-scheduling frameworks. Third, it discusses work on inter-
operation of Grids and large-scale testbeds. Finally, this section presents relevant work
focusing on VO issues.

2.6.1 Distributed Architecture Based Systems

Condor Flocking: The flocking mechanism used by Condor [67] provides a software ap-
proach to interconnect pools of Condor resources [117]. The mechanism requires manual
configuration of sharing agreements between Condor pools, with each pool and worksta-
tion owner maintaining full control about when external jobs can use their resources.

A layered design for Condor’s flocking mechanism enables Condor’s Central Manager
(CM) [117] and other Condor machines to remain unmodified and operate transparently
from the flock.

Gateway Machines (GWs) are the basis of the flocking mechanism. GWs act as re-
source brokers between pools, with at least one GW in each Condor pool. Every GW has
a configuration file describing the subset of connections that GW maintains with other
GWs. Periodically a GW queries the status of its pool from the CM, building a list of idle
resources. The GW then sends this list to the other GWs to which it is connected. The GW
receiving this list periodically chooses a machine from the list, and advertises itself with
the characteristics of that machine to the CM. The flocking protocol, a modified version of
the normal Condor protocol [117], allows the GWs to create shadow processes. Hence, a
submission machine is under the impression of contacting the execution machine directly.
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Self-Organising Flock of Condors: The original flocking scheme of Condor has the
drawback that GWs need to know a priori all pools with which they can share resources
[67]. This static information poses limitations regarding the number of resources available
and resource discovery. Butt et al. [27] introduced a self-organising resource discovery
mechanism for Condor, which allows pools to dynamically discover one another and re-
sources available. The P2P network used by the flocking mechanism relies on Pastry
[155] and takes into account the network proximity, which may save bandwidth in net-
work communications.

Shirako: Shirako [102] is a system for on-demand leasing of shared networked resources
across clusters. Shirako utilises a leasing abstraction in which site authorities represent-
ing provider sites offer their resources to be provisioned by brokers to guest applications.
Shirako brokers are responsible for co-ordinating resource allocation across provider sites.
The provisioning determines the proportion of each resource that each guest application
receives, when and where. Site authorities define the amount of resource that providers
give to service requests, and to which brokers; providers offer resources to brokers by
issuing resource tickets. When a broker approves a request, it issues a ticket that is re-
deemable for a lease at a site authority. The ticket specifies the type of resource, the
number of resource units granted and the interval for which the ticket is valid.

A service manager is a component that represents the guest application and uses Shi-
rako’s lease API to request resources from the broker. The service manager determines
when and how to redeem existing tickets, extend existing leases, or acquire new leases
to meet changing demand. The system allows guest applications to renew or extend their
leases. The broker and site authorities match accumulated pending requests with resources
under the authorities’ control. The broker prioritises requests and selects resource types
and quantities to serve them. Site authorities use Cluster on Demand [38] to configure the
resources allocated at the remote sites.

Shirako’s leasing abstraction is a useful basis for co-ordinating resource sharing in
systems that create environments consisting of virtual machines [1, 108, 158, 164]. Ra-
makrishnan et al. [146] used Shirako’s leasing core to provide a hosting model where Grid
deployments run on multiple-site containers isolated from one another. An Application
Manager (AM), which is the entry point of jobs from a VO or Grid, interacts with a Grid
Resource Oversight Co-ordinator (GROC) to obtain a recommendation of a site to submit
jobs.

VioCluster: VioCluster is a system that enables dynamic machine trading across clusters
of computers [157]. VioCluster introduces the idea of virtual domain. Initially comprising
its physical domain of origin (i.e. a cluster of computers), a virtual domain can grow
the number of its computing resources, thus dynamically allocating resources from other
physical domains according to the demands of its user applications.

VioCluster presents two important system components: the creation of dynamic vir-
tual domains and the mechanism used to negotiate resource sharing. VioCluster uses ma-
chine and network virtualisation technology to move machines between domains. Each
virtual domain has a broker that interacts with other domains. The broker has a borrow-
ing and a lending policy; the borrowing policy determines the circumstances under which
the broker attempts to obtain more machines, while the lending policy governs when the
broker lets another virtual domain make use of the machines within its physical domain.
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Virtualisation technology5 simplifies the transfer of machines between domains. A
resource borrowed by a virtual domain A from a physical domain B is utilised to run a
virtual machine, which matches the configuration of the machines in domain A. Network
virtualisation enables establishing virtual network links to connect the new virtual ma-
chine to the nodes of domain A. For the presented prototype, PBS [188] manages the
nodes of the virtual domain. PBS is aware of the computers’ heterogeneity and does not
schedule jobs on a mixture of virtual and physical machines. The size of the work queue
in PBS indicates the demand within a domain.

OurGrid: OurGrid [7] is a resource sharing system organised as a P2P network of sites
that share resources equitably, forming a Grid to which they all have access. Aiming to
ease the assembly of Grids, OurGrid provides connected sites with access to the Grid
resources with the minimal guarantees needed. OurGrid supports the execution of Bag-
of-Tasks (BoT) applications; parallel applications composed of a set of independent tasks
that do not communicate with one another during their execution. In contrast to other Grid
infrastructures, the system does not require offline negotiations if a resource owner wants
to offer their resources to the Grid.

The three participants in OurGrid’s resource sharing protocol are clients, consumers,
and providers. A client requires access to the Grid resources to run their applications. The
consumer receives requests for resources from clients, proceeds to find the resources able
to serve the request, and then executes the tasks on the resources. The provider manages
the resources shared in the community and makes them available to consumers.

OurGrid uses a resource exchange mechanism termed network of favours. A partici-
pant A is doing a favour for participant B when A allows B to use A’s resources. According
to the network of favours, every participant does favours for other participants expecting
the favours to be reciprocated. In conflicting situations, participants prioritise those who
have done them favours in the past. The more favours participants do, the more rewards
they expect. The participants account locally for their favours, and cannot profit from
them other than expecting other participants to do favours for them in return. Detailed
experiments have demonstrated the scalability of the network of favours [6], showing that
the larger the network becomes, the more fair the mechanism performs.

Delegated Matchmaking: Iosup et al. [101] introduced a matchmaking protocol in which
a computing site binds resources from remote sites to its local environment. Further they
created a network of sites over the local cluster schedulers to manage the resources of the
interconnected Grids. Sites are organised according to administrative and political agree-
ments, thus establishing parent-child links. Then, they created a hierarchy of sites with the
Grid clusters at the bottom. Supplementing the hierarchical links, they also created sib-
ling links between sites that are at the same hierarchical level and operate under the same
parent site. The proposed delegated matchmaking mechanism enables the delegation of
requests for resources up and down the hierarchy, achieving a decentralised network.

Their architecture is different from work that considers job routing. The main aim
of the matchmaking mechanism is to delegate ownership of resources to the user who
requested them via this network of sites, and add the resources transparently to the user’s
local site. When a site cannot satisfy a request locally, the matchmaking mechanism adds

5VioCluster relies on User Mode Linux (UML) for machine virtualisation:
http://user-mode-linux.sourceforge.net/
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remote resources to the user’s site. This approach aims to simplify security issues as the
mechanism adds the resources to the local pool of trusted resources.

Grid Federation: Ranjan et al. [147] proposed a system that federates clusters of com-
puters via a shared directory. Grid Federation Agents (GFAs), representing the federated
clusters, post quotes about idle resources (i.e. a claim stating that a given resource is
available) and, upon the arrival of a job, query the directory to find a suitable resource to
execute the job. The directory is a shared-space implemented as a Distributed Hash Table
(DHT) P2P network that matches quotes and user requests [149].

Ranjan et al. [148] also proposed an SLA-driven co-ordination mechanism for Grid
superscheduling. GFAs negotiate SLAs and redirect requests using a Contract-Net proto-
col. A GFA is an LRMS and uses a greedy algorithm to schedule resource requests. GFAs
engage into bilateral negotiations for each request they receive, without considering net-
work locality.

Askalon: Siddiqui et al. [165] introduced a capacity planning architecture with a three-
layer negotiation protocol for advance reservation on Grid resources. Allocators reserve
individual nodes and co-allocators reserve multiple nodes for a single Grid application.
A co-allocator receives requests from users and generates alternative offers the user can
utilise to run their application. A co-allocation request can comprise a set of allocation
requests, each corresponding to an activity of the Grid application. A workflow with a
list of activities is an example of a Grid application requiring co-allocation of resources
[198]. Co-allocators aim to agree on Grid resource sharing. Their proposed co-ordination
mechanism produces contention-free schedules, either by eliminating conflicting offers or
lowering some allocators’ objective levels.

GRUBER/DI-GRUBER: Dumitrescu et al. [54] highlighted that challenging usage poli-
cies can arise in VOs comprising participants and resources from different physical organ-
isations. Participants want to delegate access to their resources to a VO, yet maintain such
resources under the control of local usage policies. Dumitrescu et al. sought to address
the following issues:

• How to enforce usage policies at the resource and VO levels.

• What mechanisms a VO uses to ensure policy enforcement.

• How to carry out distribution of policies to enforcement points.

• How to make policies available to VO job and data planners.

Dumitrescu et al. proposed a policy management model in which participants can
specify the maximum percentage of resources delegated to a VO, and a VO can specify the
maximum percentage of resource usage it wishes to delegate to a given user group. Based
on this model, they proposed a Grid resource broker termed GRUBER [52]. GRUBER
architecture is composed of four components, namely:

• Engine: which implements several algorithms to detect available resources.

• Site monitoring: responsible for collecting data on the status of Grid resources.
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• Site selectors: consist of tools that communicate with the engine and provide in-
formation about which sites can execute jobs.

• Queue manager: which resides on the submitting host and decides how many jobs
to execute and when.

Users willing to execute jobs, do so by sending them to submitting hosts. The integra-
tion of existing external schedulers with GRUBER is made in the submitting hosts. The
external scheduler utilises GRUBER either as the queue manager that controls the start
time of jobs and enforces VO policies, or as a site recommender when the queue manager
is not available.

Dumitrescu et al. [53] also introduced a distributed version of GRUBER termed
DI-GRUBER. DI-GRUBER works with multiple decision points, which gather informa-
tion to steer resource allocations defined by Usage Service Level Agreements (USLAs).
These points make decisions on a per-job basis to comply with resource allocations to VO
groups. Authors advocate that four to five decision points would be enough to handle job
scheduling for a Grid 10 times larger than Grid3 [78] at the time the experiments were
carried out [53].

Other important work: Medusa is a stream processing system that allows the migration
of stream processing operators from overloaded to under-utilised resources. Balazinska
et al. [14] proposed a load balancing mechanism for Medusa. Offloading occurs on the
basis of the marginal cost of requests, which equates to the increase or decrease in the cost
curve resulting from the acceptance or removal of a request.

NWIRE [161] links various resources to a meta-computing system, or meta-system,
which also enables the scheduling in these environments. A meta-system comprises in-
terconnected MetaDomains. A MetaManager manages a MetaDomain, or a set of Re-
sourceManagers. A ResourceManager interfaces with the scheduler at the cluster level;
the MetaManager permanently collects information about all of its resources, handles all
requests inside its MetaDomain and works as a resource broker to other MetaDomains.
In this way, requests received by a MetaManager can be submitted either by users within
its MetaDomain or by other MetaManagers. Each MetaManager contains a scheduler that
maps requests for resources to a specific resource in its MetaDomain.

Grimme et al. [90] presented a mechanism for resource providers collaboration. Jobs
are interchanged via a central job pool, with every LRMS adding jobs it cannot start
immediately to the pool. After scheduling local jobs, a LRMS can schedule jobs from the
central pool if resources are available.

Dixon et al. [50] provided a tit-for-tat mechanism for resource allocation in large-
scale distributed infrastructures based on local non-transferable currency. Each domain
locally maintains the currency about the past provision of resources to other domains; as
credit. This creates pair-wise relationships between administrative domains, which re-
semble OurGrid’s network of favours [7]. As the information about exchanged resources
decays with time, recent behaviour carries greater importance. Simulation results show
that, for an infrastructure like PlanetLab, the proposed mechanism is fairer than its current
free-for-all approach.

Graupner et al. [88] introduced a resource control architecture for federated utility data
centres. The architecture groups physical resources in virtual servers to the services with
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which they are mapped. The meta-system is the upper layer, implemented as an overlay
network whose nodes contain descriptive data about the two layers below. Allocations
change according to service demand, which requires control algorithms to be reactive
and deliver quality solutions. The control layer performs allocation of services to virtual
server environments.

2.6.2 Hierarchical Systems, Brokers, and Meta-Scheduling
This section describes systems that are organised in a hierarchical manner. In addition,
this section describes work on Grid resource brokering and frameworks suitable to build
meta-schedulers.

Computing Centre Software (CCS): CCS [23] manages geographically distributed High
Performance Computers (HPC). It consists of three components: the CCS, which is a
vendor-independent LRMSs for local HPC systems; the Resource and Service Descrip-
tion (RSD), used by the CCS to specify and map hardware and software components of
computing environments; and the Service Coordination Layer (SCL), which co-ordinates
the use of resources across computing sites.

The CCS controls the mapping and scheduling of interactive and parallel jobs on mas-
sive parallel systems. It uses the island concept, where each island has components for
user interface, authorisation and accounting, scheduling of user requests, access to the
physical parallel system, system control, and management of the island. At the meta-
computing level, the Centre Resource Manager (CRM) sits over the CCS islands, and
exposes their scheduling and brokering features. When a user submits an application, the
CRM maps the user request to the static and dynamic information regarding available re-
sources. Once the CRM finds resources, it requests the allocation of all required resources
at all the islands involved. If not all resources are available, the CRM either re-schedules
the request or rejects it. Centre Information Server (CIS) is a passive component that
contains information about resources and their statuses, and is analogous to Globus Meta-
computing Directory Service (MDS) [79]. The CRM uses the CIS to obtain information
about available resources.

The Service Co-ordination Layer (SCL) sits one level above the LRMSs to co-ordinate
the use of resources across the island network. Organised as a network of co-operating
servers, where each server represents one computing centre, the centres determine which
resources are available to others and retain full autonomy over them.

EGEE Workload Management System (WMS): EGEE WMS has a semi-centralised
architecture [185]. One or more schedulers can be installed in the Grid infrastructure, each
providing scheduling functionality for a group of VOs. The EGEE WMS components are:

• User Interface (UI), where the user dispatches the jobs;

• Resource Broker (RB), which uses Condor-G [84];

• Computing Element (CE), the cluster front-end;

• Worker Nodes (WNs), the cluster nodes;

• Storage Element (SE), to store job files; and
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• Logging and Bookkeeping service (LB), which registers job events.

Condor-G: Condor-G [84] employs software from Globus [79] and Condor [84] to allow
users to utilise resources spanning multiple domains as if they all belong to one personal
domain. Although existing work considers Condor-G as a resource broker itself [187], it
can also provide a framework to build meta-schedulers.

The GlideIn mechanism of Condor-G can start a daemon process on a remote resource
using standard Condor mechanisms to advertise the resource availability to a Condor col-
lector process, which the Scheduler queries to learn about available resources. Condor-G
uses Condor mechanisms to match locally queued jobs to the resources advertised by these
daemons and to execute them on those resources. Condor-G submits an initial GlideIn
executable (a portable shell script), which in turn uses Grid Security Infrastructure (GSI)-
authenticated GridFTP to retrieve the Condor executables from a central repository. By
submitting GlideIn executables to all remote resources capable of serving a job, Condor-G
can guarantee optimal queuing times to user applications.

Gridbus Broker: Gridbus Grid resource broker [187] is a user-centric broker that pro-
vides scheduling algorithms for both computing- and data-intensive applications. In Grid-
bus, each user has their own broker, which represents them by selecting resources that
minimise service constraints such as execution deadline and provided budget, submitting
jobs to remote resources, and copying input and output files. Gridbus interacts with vari-
ous Grid middleware [47, 187].

GridWay: GridWay [98] is a resource broker that provides a framework for executing
jobs in a ‘submit and forget’ fashion. The framework performs job submission and exe-
cution monitoring, with job execution adapting itself to dynamic resource conditions and
application demands to improve performance. GridWay enables adaptation through ap-
plication migration following performance degradation, sophisticated resource discovery,
requirements change, or remote resource failure.

The framework is modular with the following modules set on a per-job basis: resource
selector, performance degradation evaluator, prolog, wrapper, and epilog. As the names
of the first two modules or steps are intuitive, we describe only the last three here. During
prolog, the component responsible for job submission (i.e. submission manager) submits
the prolog executable, which configures the remote system and transfers executable and
input files. In the case of an execution restart, the prolog also transfers restart files. Grid-
Way submits the wrapper executable after prolog; enclosing the actual job to obtain its
exit code. The epilog script transfers the output files and cleans the remote resource.

GridWay also enables the deployment of virtual machines in a Globus Grid [126].
GridWay performs the scheduling and selection of suitable resources, and provides a
virtual workspace for each Grid job. A pre-wrapper phase performs advanced job con-
figuration routines, whereas the wrapper script starts a virtual machine and triggers the
application job on it.

GridWay framework has also been used to enable hierarchical meta-scheduling struc-
tures [99]. Each target group of resources or Grid is handled as another resource, in a
recursive manner. This approach enables multiple-level hierarchies of meta-schedulers.

KOALA: Mohamed and Epema [125] proposed KOALA; a Grid scheduler that supports
resource co-allocation. KOALA Grid scheduler interacts with LRMSs to execute jobs.
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The work proposed an alternative to advance reservation at LRMSs, when reservation
features are not available, allowing the allocation of processors from multiple sites simul-
taneously.

SNAP-Based Community Resource Broker: The Service Negotiation and Acquisition
Protocol (SNAP)-based community resource broker uses a three-phase commit proto-
col. SNAP is proposed to counter traditional advance reservation facilities not coping
with the fact that information availability may change between the moment at which re-
source availability is queried and the time when the reservation of resources is actually
performed [92]. The three phases of the SNAP are:

1. Resource availability is queried and probers are deployed, which inform the broker
in case the resource status changes;

2. Resources are selected and reserved; and

3. The job is deployed on the reserved resources.

Platform Community Scheduler Framework (CSF): CSF [143] provides a toolset to
create Grid meta-schedulers or community schedulers. The resulting meta-scheduler en-
ables users to define protocols to interact with resource managers in a system independent
manner. A component termed Resource Manager (RM) Adapter works as the interface
with LRMSs. CSF supports the GRAM protocol [79] to access the services of LRMSs
that do not support the RM Adapter interface.

Platform’s Load Sharing Facility (LSF) and MultiCluster products use CSF to provide
a framework for meta-scheduling. The Grid Gateway interface integrates LSF and CSF. A
scheduling plug-in for Platform LSF scheduler decides which LSF jobs to forward to the
meta-scheduler, based on information obtained from a Grid Gateway information service.
When the plug-in forwards a job to the meta-scheduler, the submission and monitoring
tools dispatch the job and query its status information through the Grid Gateway. The
Grid Gateway uses the job submission, monitoring, and reservation services from the
CSF. Platform MultiCluster also allows clusters using LSF to exchange jobs.

Other important work: Kertész et al. [109] introduced a meta-brokering system in
which the meta-broker, invoked through a Web portal, submits jobs, monitors job status,
and copies output files using brokers from different Grid middleware, such as NorduGrid
Broker and EGEE WMS.

Kim and Buyya [110] tackled the problem of fair-share resource allocation in hier-
archical VOs, providing a model for hierarchical VO environments based on a resource
sharing policy, and proposing a heuristic solution.

2.6.3 Inter-Operation of Grids and Large-Scale Testbeds
This section discusses relevant work on inter-operation of Grids and large-scale testbeds.

PlanetLab: PlanetLab [141] is a large-scale testbed that enables the creation of slices,
or distributed environments based on virtualisation technology. A slice is a set of virtual
machines, each running on a unique node. The service running on the slice manages the
set of virtual machines. Each individual virtual machine contains no information about
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other virtual machines in the set. Each service deployed on PlanetLab runs on a slice of
PlanetLab’s global pool of resources. Multiple slices can run concurrently and each slice
isolates services from other slices.

The principals in PlanetLab are:

• Owner: an organisation that hosts (owns) one or more PlanetLab nodes.

• User: a researcher who deploys a service on a set of PlanetLab nodes.

• PlanetLab Consortium (PLC): a centralised trusted intermediary that manages
nodes for a group of owners, and creates slices on those nodes on behalf of a group
of users.

When PLC acts as a Slice Authority (SA), it maintains the state of the list of system-
wide slices for which it is responsible. The SA provides an interface through which users
register themselves, create slices, bind users to slices, and request the instantiation of
a slice on a set of nodes. PLC, acting as a Management Authority (MA), maintains a
server to install and update the software running on the nodes it manages, and monitor
these nodes for correct behaviour, taking appropriate action when detecting anomalies
and failures. The MA maintains a database of registered nodes; each node being affiliated
with an organisation (owner) and located at a site of the organisation. MA provides an
interface for node owners to register nodes with the PLC, and users and slices authorities
to obtain information about the set of nodes managed by the MA.

PlanetLab’s architecture has evolved to enable decentralised control or federations of
PlanetLabs [141]. The recent architecture design splits the PLC into two components
namely the MA and SA, which allow PLC-like entities to evolve these components in-
dependently. In this way, autonomous organisations can federate and define peering re-
lationships with one another. One of goals of PlanetLab Europe6 and OneLab2 [85] is
for peering relationships with other infrastructures. A resource owner can choose a MA
to which they want to provide resources. MAs, in turn, can blacklist particular SAs. A
SA can trust only certain MAs to provide the virtual machines required by its users. This
enables various types of agreements between SAs and MAs.

It is also important to mention that Ricci et al. [151] discussed issues related to the
design of a general resource allocation interface that is sufficiently wide for allocators
in a large variety of current and future testbeds, including PlanetLab federations. They
have described an allocator as a component that receives the users’ abstract description for
the required resources and the resource status from a resource discoverer, and produces
allocations performed by a deployment service. An allocator’s goal is to allow users to
specify characteristics of their slice in high-level terms and find resources to match these
requirements. Describing their experience in designing PlanetLab and Emulab,7 Ricci et
al. advocated several important issues, including:

• In future infrastructures, several allocators may co-exist and it might be difficult for
them to operate without interfering with one another;

6http://www.planet-lab.eu/
7http://www.emulab.net/
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• With the proportional-share philosophy of PlanetLab, where multiple management
services can co-exist, allocators do not have guarantees over any resources; and

• Co-ordination between allocators can be required.

Grid Interoperability Now – Community Group (GIN-CG): GIN-CG has been work-
ing on providing interoperability between Grids by developing components and adapters
that enable secure and standard job submissions, data transfers, and information queries
[152]. These efforts provide the basis for load management across Grids by facilitating
standard job submission and request redirection. They also enable secure access to re-
sources and data across Grids. Although GIN-CG’s efforts are essential, its members have
also highlighted the need for common resource allocation and brokering across Grids.8

Interoperable Brokering Service: Elmroth and Tordsson [60] proposed a standards-
based Grid resource brokering service for providing interoperability among different Grid
middlewares. The brokering service architecture is distributed, user-oriented and com-
prises a job submission client, and some middleware-specific interfaces. Currently, inter-
faces for the NorduGrid [56] Advanced Resource Connector (ARC) middleware [58] and
Globus are available.

The broker aims to reduce the Total Time to Delivery (TTD) – the time between job
submission and staging out of output files – for each job submission. Benchmarks are
used to estimate job execution times; at submission, the user must specify one or more
benchmarks with performance characteristics similar to those of the job along with an
execution time estimate. Avoiding the overhead of executing the benchmarks at each
job submission, the benchmarks are run once for each Grid resource and published in an
index server. The broker uses the benchmarks to make execution time estimates for the
candidate Grid resources assuming a linear scaling [61].

In addition, the brokering service supports advance reservations, which are used to
provide job waiting time guarantees and co-allocate Grid resources [62]. The proposed
co-allocation algorithm strives to find the earliest common start time for all jobs within a
given job start window. The earliest start time is obtained by creating a set of reservations
within a period smaller than the job start window.

A proxy mechanism enables the proposed brokering service to achieve job submission
interoperability between Grid middlewares by allowing clients to express their jobs in the
native job description language of their middleware [62].

Other important work: Boghosian et al. [20] performed experiments using resources
from more than one Grid for three projects: Nektar, SPICE and Vortonics. The appli-
cations in these three projects require numerous computing resources, achievable only
through interconnected Grids. Although they used resources from multiple Grids during
the experiments, they also emphasised that several human interactions and negotiations
are required to use federated resources. They highlighted that even if interoperability at
the middleware level existed, it would not guarantee that the federated Grids are utilised
for large-scale distributed applications due to important additional requirements, such
as compatible and consistent usage policies, automated advanced reservations, and co-
scheduling.

8The personal communication among GIN-CG members is online at:
http://www.ogf.org/pipermail/gin-ops/2007-July/000142.html
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Caromel et al. [34] proposed the use of a P2P network to acquire resources dynam-
ically from Grid’5000 and desktop machines, to run computationally intensive applica-
tions. The P2P network and Grid’5000 communicate via Secure Shell (SSH) tunnels.9

Moreover, the allocation of nodes for the P2P network uses the ProActive [33] deploy-
ment framework; deploying Java Virtual Machines on the allocated nodes.

In addition to GIN-CG’s efforts, Wang et al. [190] introduced another Grid middle-
ware interoperability approach, describing a gateway approach to achieve interoperability
between gLite [57], the middleware used in EGEE, and CNGrid GOS, the Chinese Na-
tional Grid middleware.10 Their work focused on job management interoperability, also
describing interoperability between the different protocols used for data management and
resource information. The proposed interoperability approach encapsulates gLite as a site
job manager of GOS, whereas gLite submits jobs to GOS resources in a different manner;
an extended job manager is instantiated for each job submitted to a GOS resource. The
extended job manager sends the whole batch job to execute in the CNGrid.

2.6.4 Virtual Organisations
This section investigates how projects address different challenges in the VO life cycle.
Two main categories of projects have been identified: the facilitators for VOs, which
provide means for building clusters of organisations, hence enabling collaboration and
formation of VOs; and enablers for VOs, which provide middleware and tools to help in
the formation, management, maintenance, and dissolution of VOs. This classification is
not strict as a project can belong to both categories, providing software for enabling VOs
and working as a consortium, which organisations can join and then start collaborations
that are more dynamic.

The investigation is divided into three parts: middleware and software infrastructure
for enabling VOs, consortiums and charters that facilitate the formation of VOs, and other
relevant work that addresses issues related to a VO’s life cycle.

Enabling Technology

Enabling a VO means to provide the required software tools to help in the different phases
of the VO life cycle. Several projects do not address all the phases due to the complex
challenges in the life cycle.

CONOISE Project: CONOISE [140] uses a marketplace based on combinatorial auc-
tions to form VOs [131]. Combinatorial auctions allow a high degree of flexibility,
whereby VO initiators can specify a broad range of requirements. A combinatorial auction
allows the selling of multiple units of a single item or multiple items simultaneously. How-
ever, combinatorial auctions lack on means for bid representation and efficient clearing
algorithms to determine prices, quantities, and winners. As demonstrated by Dang [42],
clearing combinatorial auctions is an NP-Complete problem. Thus, CONOISE provides
polynomial and sub-optimal auction clearing algorithms for combinatorial auctions.

In VOs enabled by CONOISE, agents are the stakeholders. Demonstrating VO for-
mation, a user may request a service of an agent, who in turn verifies whether it is able to

9http://en.wikipedia.org/wiki/Secure Shell
10http://www.cngrid.org
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provide the service at the specified time. If the agent cannot provide the service, it looks
for Service Providers (SPs) offering the service. The Requesting Agent (RA) then starts
a combinatorial auction and sends call for bids to SPs. Once the RA receives the bids,
it determines the best set of partners and starts the formation of a VO. Once the VO is
formed, RA becomes the VO manager.

An agent that receives a call for bids can: (a) decide not to bid for the auction; (b) bid
considering her resources; (c) bid using resources from an existing collaboration; or (d)
identify the need to start a new VO to provide the extra resources required. CONOISE
uses cumulative scheduling based on a Constraint Satisfaction Program (CSP) to model
an agent’s decision process.

CONOISE also focuses on the operation and maintenance phases of VOs. After the
formation of a VO, CONOISE uses principles of coalition formation to distribute tasks
among agents. Dang [42] presented and evaluated an algorithm for coalition structure
generation. Although not very focused on authorisation issues, CONOISE provides repu-
tation and policing mechanisms to ensure minimum quality of service, thus dealing with
issues regarding VO trust and reputation.

TrustCoM Project: TrustCoM [49] addresses issues related to the establishment of trust
throughout the VO life cycle. Its members envision that the establishment of Service
Oriented Architectures (SOAs) and the dynamic open electronic marketplaces will allow
dynamic alliances and VOs among enterprises to respond quickly to market opportunities.
Hence, it is important to establish trust not only at a resource level, but also at a business
process level. TrustCoM aims to provide a framework for trust, security, and contract
management to enable on-demand and self-managed dynamic VOs [49, 179].

The framework extends VO membership services [179] by providing means to:

• Identify potential VO partners through reputation management;

• Manage users according to the roles defined in the business process models that VO
partners perform;

• Define and manage SLA obligations on security and privacy; and

• Enable the enforcement of policies based on SLAs and contracts.

From a corporate perspective, Sairamesh et al. [159] provide examples of business
models for the enforcement of security policies and the VO management. As the goal is
to enable dynamic VOs, TrustCoM focuses on security requirements for the establishment
of VOs composed of enterprises. TrustCoM has performed studies and market analyses
to identify the main issues and requirements to build a secure environment in which VOs
form and operate.

Facilitators or Breeding Environments

In order to address the issue of trust between organisations, projects have created federa-
tions and consortiums which physical organisations or Grids can join to start VOs based
on common interests. This section describes the main projects in this field and explains
some of the technologies they use.
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Open Science Grid (OSG): OSG [144] is a facilitator for VOs. The project aims to form
a cluster, or consortium, of organisations and recommends they follow a policy that states
how collaboration occurs and how to form a VO. To join the consortium and consequently
form a VO, it is necessary to have a minimum infrastructure and preferably use the Grid
middleware suggested by OSG. In addition, OSG provides tools to monitor existing VOs.
OSG facilitates the formation of VOs by providing an open-market-like infrastructure,
where the consortium members can advertise their resources and goals and establish VOs.
VOs are recursive and hierarchical; thus VOs can comprise sub-VOs.11

The basic infrastructure required to form a VO includes a VO Membership Service
(VOMS) [2] and operational support, primarily to provide technical support services for
requests from member sites. As OSG intends to federate across heterogeneous Grid en-
vironments, the resources of the member sites and users are organised in VOs under the
contracts resulting from negotiations among the sites, which have to follow the consor-
tium’s policies. Such contracts are defined at the middleware layer, where negotiation can
be automated. However, thus far, there is no easily responsive means to form a VO, hence
the formation requires complex multilateral agreements among the involved sites.

OSG middleware uses VOMS to support authorisation services for VO members,
hence assisting in the maintenance and operation phases. Additionally, for the sake of
scalability and ease of administration, Grid User Management System (GUMS) facilitates
the mapping of Grid credentials to site-specific credentials. GUMS and VOMS provide
means to facilitate the authorisation in the operation and maintenance phases. GridCat
provides maps and statistics on running jobs and storage capacity of the member sites; in-
formation that can guide schedulers and job submission brokers, and in turn facilitate the
operation phase. Additionally, MONitoring Agents using a Large Integrated Services Ar-
chitecture (MONALISA) [115] monitor computational nodes, applications, and network
performance of the VOs within the consortium.

Enabling Grids for E-sciencE (EGEE): Similarly to OSG, EGEE [65] federates re-
source centres to provide a global infrastructure for researchers. EGEE’s resource centres
are hierarchically organised: an Operations Manager Centre (OMC) located at the Euro-
pean Organisation for Nuclear Research (CERN), Regional Operations Centres (ROCs)
located in different countries, Core Infrastructures Centres (CICs), and Resource Centres
(RCs) responsible for providing resources to the Grid.

A ROC carries out activities such as supporting deployment and operations, negoti-
ating SLAs within its region, and organising Certification Authorities (CAs). CICs are
in charge of providing VO services such as maintaining VO servers and registration; VO
specific services such as databases, resource brokers and user interfaces; and other ac-
tivities such as accounting and resource usage. The OMC interfaces with international
Grid efforts, and is responsible for activities such as approving connection with new RCs,
promoting cross-trust among CAs, and enabling co-operation and agreements with user
communities, VOs and existing national and regional infrastructures.

As well as installing the LCG-2/gLite Grid middleware [57], a formal request is
needed to join EGEE, with further assessment by special committees. A VO is formed
if the application is suitable for EGEE. Accounting is based on the use of resources by
members of the VO.

11More details about the VOs enabled by OSG are available at the consortium’s blueprint document [135].
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Other Important Work

Resource allocation in a VO depends on several conditions and rules. The VO can contain
physical organisations under different, sometimes conflicting, resource usage policies.
Participating organisations provide their resources to the VO through contracts and agree
to enforce VO level policies, which state who can access the resources within the VO.
Different models can be adopted for negotiation and contract enforcement. One model
relies on a trusted VO manager, where resource providers supply resources to the VO
according to contracts established with the VO manager, who assigns resource quotas to
VO groups and users based on a commonly agreed VO-level policy. Alternatively, a VO
can follow a democratic or P2P sharing approach, in which “you give what you can and
get what others can offer” or “you get what you give” [192].

Elmroth and Gardfjäll [59] presented an approach that uses a scheduling framework to
enforce policies to enable Grid-wide fair-share scheduling. The policies are hierarchical
in the sense that they can be subdivided recursively to form a tree of shares, yet they are
enforced in a flat and decentralised manner. In the proposed framework, resources have
local policies that reference the VO-level policies, which split the available resources to
given VOs. While a centralised scheduler is not required, the proposed framework and
algorithm depend on locally caching global usage information.

2.7 Requirements, Analysis, and Positioning
This section first presents the requirements for resource sharing among computational
Grids, before classifying the work described earlier, and providing an analysis of the
examined systems and the requirements they meet. After that, this section positions the
thesis in regards to existing work and the requirements for resource sharing.

2.7.1 Requirements for Resource Sharing between Grids
To achieve resource sharing between Grids, a solution should meet the following require-
ments:

1. Interoperability: efforts on interoperability between Grid middlewares provide
the basis for load management and resource sharing across Grids by facilitating job
submission or request redirection.

2. Interface with existing GRMSs: existing Grids have resource management sys-
tems in place, which are the result of several years of software engineering and
development. A solution that does not consider current LRMSs and GRMSs may
discourage system administrators utilising it.

3. Provide a general infrastructure and dynamic collaborations: the interconnec-
tion of Grids must provide research communities with a general infrastructure for
deploying applications, which enables more dynamic and prompt collaborations
among interconnected Grids. Analogously to large-scale testbeds, a research com-
munity should be able to request a “slice” of the infrastructure on demand.
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4. Decentralisation: a solution for resource sharing between Grids should not rely on
centralised architectures, as is not always clear who is the responsible for maintain-
ing centralised components in a multiple-Grid scenario. In addition, a centralised
approach is vulnerable to a single point of failure.

5. Respect administrative separation: this requirement relates to decentralisation.
Some of the existing large-scale testbeds are consortiums where a centralised entity
performs the resource allocation. As Grid computing aims to allow providers to
retain ultimate control over the resources they offer to the Grid, Grids should retain
ultimate control over the resources they provide to other (interconnected) Grids,
while respecting the needs of their internal Grid users.

6. Deal with resource contention: ideally, for a Grid A to provide resources to an-
other Grid B, Grid A should have minimum guarantees over the resources providers
are offering before agreeing to accept requests from Grid B. These guarantees are
difficult to obtain because there is contention for resources between providers’ local
users and Grid users. Resource sharing between Grids introduces another level of
resource contention: between users of the local Grid and users from other Grids. A
solution for resource sharing between Grids should deal with these contentions.

7. Provide incentives: resource sharing between Grids must provide incentives to the
interconnected Grids; otherwise discouraged to share resources. Grids can have
incentives in terms of:

• Improved application performance;

• Increased geographic reach-ability; and

• Reduced infrastructure costs.

2.7.2 Analysis of Existing Work
This section classifies the existing work investigated earlier. The tables presented consider
a subset of the investigated systems. Then, the section presents an analysis of existing
work and a discussion on what requirements they meet.

Table 2.2 classifies existing work according to their architectures and operational mod-
els. Gridbus Broker [187], GridWay [98], and the SNAP-based community resource bro-
ker [92] are resource brokers that act on behalf of users to submit jobs to Grid resources
to which they have access. They follow the operational model based on job routing.
GridWay enables various architectural models such as hierarchical and decentralised [99].
GridWay provides means to deploy virtual machines, in which the deployment takes place
on a job basis [126]. DI-GRUBER [54], VioCluster [157], Condor flocking [67], and
Platform’s CSF [143] have distributed-scheduler architectures in which brokers or meta-
schedulers have bilateral sharing agreements (Table 2.3). OurGrid [7] and Self-organising
flock of Condors [27] utilise P2P networks of brokers or schedulers, whereas Grid fed-
eration [147] uses a P2P network to build a shared space utilised by providers and users
to post resource claims and requests respectively (Table 2.3). VioCluster and Shirako en-
able the creation of virtualised environments on which the user can deploy job routing
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Table 2.2: GRMSs according to their architectures and operational models.

System Architecture Operational Model

SGE and PBS Independent clusters Job routing
Condor-G Independent clusters* Job routing

Gridbus Broker Resource broker Job routing
GridWay Resource broker** Job routing***

SNAP-Based Community Resource Broker Resource broker Job routing

EGEE WMS Centralised Job routing
KOALA Centralised Job routing
PlanetLab Centralised N/A+

Computing Center Software (CCS) Hierarchical Job routing

GRUBER/DI-GRUBER Distributed/static Job routing
VioCluster Distributed/static N/A+

Condor flocking Distributed/static Matchmaking
Community Scheduler Framework (CSF) Distributed/static Job routing

OurGrid Distributed/dynamic Job routing
Self-organising flock of Condors Distributed/dynamic Matchmaking
Grid federation Distributed/dynamic Job routing
Askalon Distributed/dynamic Job routing
SHARP/Shirako Distributed/dynamic N/A+

Delegated Matchmaking Hybrid Matchmaking
* Condor-G provides software suitable for building meta-schedulers.

** GridWay is an organisation-centric broker that enables various architectural models such
as hierarchical and decentralised.

*** GridWay also manages the deployment of virtual machines.
+ PlanetLab, VioCluster and Shirako use resource control at the containment level, but they

also enable the creation of virtual execution environments on which systems based on job
routing can be deployed.

or job pulling based systems. These last two systems control resources at the level of
containment or virtual machines.

SGE, PBS, and Condor are included here for the sake of completeness, but in reality,
they are LRMSs. The solutions based on resource brokers [98, 109, 187]: allow for the
scheduling of jobs across organisations with heterogeneous Grid middleware; can work
with existing GRMSs; and provide interoperability at the job submission level. How-
ever, there is still a need to preserve administrative separation. On one hand, user-centric
brokers provide a decentralised architecture; on the other hand, they can exacerbate the
problem of resource contention in interconnected Grids. In addition, existing resource
brokers are unaware of agreements established between Grid infrastructures, which de-
fine the amount of resource one Grid can allocate from another. Job submission performed
ignoring such agreements makes it difficult to enforce Grid-level resource usage policies.
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Some systems based on federations of clusters [27, 67, 102, 143, 147, 157] present
decentralised architectures and have attributes that are essential as GRMSs. However,
during the conception of these systems, the need for supporting interconnection of Grids
following the idea of administrative separation and dealing with resource contention in
interconnections of Grids was not identified.

As described earlier, Shirako [102, 146] uses an architecture composed of a network of
brokers that have information about the resources offered by providers. These brokers can
exchange resources, which service managers use to deploy virtual machines. In this way,
Shirako is able to provide a general infrastructure based on the abstraction of leases. Users
utilise the resources they lease to deploy different types of applications. However, Shirako
does not deal with two aspects: the mechanisms and policies that define how brokers
exchange resources; and how resource providers estimate the utilisation of resources by
their local users before agreeing to give resources to a broker, which means that it does
not deal with the contention between providers’ local users and Grid users.

Table 2.3 summarises the communication models and sharing mechanisms that sys-
tems based on distributed schedulers utilise. Shirako uses transitive agreements in which
brokers can exchange claims of resources issued by site authorities that represent the re-
source providers. It allows brokers to delegate access to resources multiple times.

Table 2.3: Classification of GRMSs according to their sharing arrangements.

System Communication Pattern Sharing Mechanism

GRUBER/DI-GRUBER Bilateral agreements System centric
VioCluster Bilateral agreements Site centric
Condor flocking Bilateral agreements Site centric
OurGrid P2P network System centric
Self-organising flock of Condors P2P network Site centric
Grid federation Shared space Site centric
Askalon Bilateral agreements Site centric
SHARP/Shirako Transitive agreements Self-interest
Delegated MatchMaking Bilateral agreements Site centric

The sharing mechanisms utilised by these systems based on distributed-schedulers
can derive the incentives required by participating clusters. Bilateral agreements and a
P2P network, for example, can define the conditions under which the clusters exchange
resources. As described earlier, however, interconnection of Grids was not envisaged
during the design of these systems. Thus, resolving situations of dispute for resources
between Grids was not crucial.

Table 2.4 summarises the resource control techniques employed by the investigated
systems. As noted earlier, VioCluster, Shirako and PlanetLab use containment based
resource control, whereas the remaining systems utilise the job model. Control at the con-
tainment level (i.e. using virtual machines) makes more general execution environments
possible because they allow for the customisation of the resources allocated. However,
as described earlier, virtual machines and batch jobs can co-exist; the former can produce
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Table 2.4: GRMSs according to their support for VOs and resource control.

System Support for VOs Resource Control

EGEE WMS Multiple VO Job model
KOALA Single VO Job model
GRUBER/DI-GRUBER Multiple VO Job model
VioCluster Single VO Container model/multiple site*

Condor flocking Single VO Job model
OurGrid Single VO Job model
Self-organising flock of Condors Single VO Job model
Grid federation Single VO Job model
Askalon Single VO Job model
PlanetLab Multiple VO** Container model/multiple site
SHARP/Shirako Multiple VO*** Container model/multiple site+

Delegated MatchMaking Single VO Job model
* VioCluster supports containment at both single site and multiple site levels.

** The slices provided by PlanetLab are analogous to VOs here.
*** Shirako enables the creation of multiple-site containers suitable for hosting multiple

VOs [146], even though it does not handle issues on job scheduling among multiple
VOs.

+ Shirako supports containment at both (i) single site level through Cluster on
Demand [38] and (ii) multiple-site level. Shirako also explores resource control at
job level by providing recommendations about the site on which jobs should
execute [146].

greater levels of performance isolation, whereas the latter poses fewer overheads.
The support of various systems for the VO life cycle phases is depicted in Table 2.5.

We select a subset of the systems investigated in this thesis, particularly the work that
focuses on VO related issues such as their formation and operation. As shown in Table 2.4,
EGEE WMS [185] and DI-GRUBER take into account the scheduling of jobs according
to the VOs to which users belong and the shares contributed by resource providers. The
other systems enable the formation of a single VO wherein the control of jobs can take
place on a user basis.

DI-GRUBER and gLite schedule jobs by considering the resource shares of multi-
ple VOs. EGEE and OSG also work as facilitators of VOs by providing consortiums to
which organisations can join and start VOs (Table 2.6). However, the process requires the
establishment of contracts between the consortium and the physical resource providers.
Shirako enables the creation of multiple-provider virtualised environments on which mul-
tiple VOs can be hosted [146].

The systems’ characteristics and the VOs they enable are summarised in Table 2.6.
Conoise [140] and Akogrimo [195] allow the formation of dynamic VOs in which a user
utilising a mobile device can start the VO. Resource providers in Shirako can offer their
resources in return for economic compensation. This means that the resource providers
could not have a common target in solving a particular resource challenge, making the
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Table 2.5: Support to the phases of the VO’s lifecycle by the projects analysed.

Project
Name

Support for the phases of the VO life cycle Support for
short term
collaborationsCreation Operation Maintenance Dissolution

OSG* Partial Partial Not available Not available Not available
EGEE/gLite* Partial Available Not available Not available Not available
CONOISE Available Available Available Not available Available
TrustCoM Partial** Partial** Not available Not available Not available
DI-GRUBER Not available Available Partial*** Not available Not available
Akogrimo+ Partial Partial Partial Partial Partial
Shirako Not available Available Available Not available Not available

* OSG and EGEE work as consortiums enabling trust among organisations and facilitating the
formation of VOs. They also provide tools for monitoring the status of resources and job
submissions. EGEE’s WMS performs job scheduling taking into account multiple VOs.

** Mainly related to security issues.
*** DI-GRUPER’s policy decision points allow for the re-adjustment of the VOs according to the

current resource shares offered by providers and the status of the Grid.
+ Akogrimo aims to enable collaboration between doctors upon the patient’s request or in case of a

health emergency.

VOs non-targeted. A virtual environment adapts by leasing additional resources or ter-
minating existing leases according to the demands of the VO that the environment is
hosting [146].

Each solution focuses on specific aspects of the VO life cycle. Some projects aim
to facilitate the formation of VOs through the establishment of consortiums. In a general
manner, physical organisations join the consortiums to be part of a VO. We argue that such
an approach has contributed to the isolation of Grids, thus, we propose that Grids should
provide a general infrastructure upon which communities can create VOs on demand.
Drawing an analogy to PlanetLab, VOs should be “slices” of the interconnected Grids.
This scenario still requires the techniques proposed for the formation, management and
termination of VOs described earlier.

Inter-operation Efforts

As noted earlier, there have been initiatives for interconnecting Grids and federating large-
scale testbeds [85, 142, 152], and other attempts to make different Grid middleware in-
teroperable [190]. These efforts provide the basis for load management across Grids by
facilitating standard job submission and request redirection.

Inter-operability between different Grid middlewares is important, however, previous
work has shown that mechanisms to enable resource sharing are equally essential to in-
terconnect Grids [152]. While standard interfaces and adaptors for job submission and
resource discovery are also important, there is a need for mechanisms that use these inter-
faces. This thesis attempts to build on inter-operability efforts and investigate mechanisms
to enable the provisioning of resources from multiple Grids to applications.
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2.7.3 Positioning of this Thesis

In order to meet the requirements enumerated in Section 2.7.1, this thesis proposes an ar-
chitecture and provisioning strategies to enable the inter-operation of Grids. The architec-
ture discussed in Chapter 3 is inspired by the manner in which Internet Service Providers
(ISPs) establish peering arrangements in the Internet [123]. ISPs compete for users, but
have incentives to interconnect and allow traffic into one another’s networks. These ben-
efits can include increased network coverage, reduction of traffic in other expensive links,
improved quality of service for their users, and the likely increase in profits [12, 123].

An architecture for Grid computing based on peering arrangements can provide the
incentives required to interconnect Grids. In addition, it can offer the interfaces with
GRMSs currently utilised by the interconnected Grids. The proposed architecture intro-
duces the idea of InterGrid Gateways that mediate access to the resources of the inter-
connected Grids. InterGrid Gateways also work as entry points to the Grids. In addition,
the system implementation of the proposed architecture considers resource control at the
containment level where resources allocated run virtual machines. That minimises some
security concerns that are common in resource sharing between organisations and gives
the possibility of building more general execution environments that users can customise
according to their needs.

However, the requirements also demand mechanisms for resource sharing between
Grids. This thesis presents a mechanism for resource sharing between Grids that uses
resource availability information obtained from typical LRMSs. The mechanism redirects
requests based on their marginal cost of allocation, and meets the requirements in terms
of working with traditional LRMSs and minimising the contention for resources between
users of a Grid and users from other Grids.

This thesis also considers that the resources allocated from the interconnected Grids
are utilised by the users to deploy their applications. An InterGrid Gateway routes requests
to a provider able to offer the required resources. However, for negotiation between Inter-
Grid Gateways we do not consider the routing and migration of the jobs with all required
input files. Once the InterGrid Gateway grants the request with resources, the user copies
the input files to the target site.

The resource sharing mechanism derives from Medusa [14], but differs in terms of
the: negotiation protocol for exchanging resources between Grids, resource selection and
request redirection policies, and the heterogeneity of resources within Grids, given by the
number of processors. The resource selection policies take into account the availability of
resources within multiple clusters that in turn employ optimisations such as backfilling.

The scenario for applying the proposed resource sharing mechanism differs from the
load-sharing scenario described in other work. For example, the scenario considered in
this thesis is different from that by Wang and Morris [191] because the resources con-
sidered here have multiple processors. In addition, resources are heterogeneous in the
number of processors, making the local scheduling sub-problem different. Resource man-
agement across Grids introduces a third sub-problem: the load sharing between Grids.
Previous work has also introduced load balancing for DHT-based networks. Surana et
al. [178] introduced a mechanism where nodes of the P2P system run virtual servers re-
sponsible for ranges of objects in the address space. They inform directories about the
load in the virtual servers, whereas the directories periodically compute reassignments
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and trigger migrations of virtual servers to achieve load balance. This thesis, in contrast,
does not perform migration of virtual servers, but focuses on the redirection and assign-
ment of resources to requests.

The resource sharing mechanism investigated in this thesis is different from those pro-
posed for federation of clusters. It considers a higher-level hierarchy of the system entities
wherein a Grid is a collection of resource providers and needs to provision resources to
applications within the Grid. This is in itself a federation problem, but additionally a Grid
provides resources to other Grids aiming not to sacrifice the performance of its users. In
contrast to the Grid Federation Agents proposed by Ranjan et al. [148], as an example,
InterGrid Gateways do not engage into negotiations if they can handle requests locally
without increasing the resource utilisation cost above its threshold.

The proposed architecture is a hybrid of hierarchical and distributed. Providers within
a Grid are organised in a hierarchical manner similarly to existing Grids. The gateways
representing the Grids are organised in a decentralised way through a network of peering
arrangements. Our architectural model shares aspects with Iosup et al.’s work [101], in the
sense that InterGrid Gateways work as site recommenders matching requests to resources
available. However, it is different with respect to the resource sharing mechanisms, the
consideration of providers’ local users, and the compensation of resource providers for
the resources acquired by an InterGrid Gateway.

Market and Economics-inspired Mechanisms

The use of mechanisms inspired in economic principles comes from observing of how
economies allocate resources. However, the advantages and performance of market-based
mechanisms over other resource management approaches are generally overstated. Nakai
and Van Der Wijngaart [129] made a critical analysis of the General Equilibrium (GE)
theory and the applicability of markets to global scheduling in Grids. Considering that
GE theory is a description of a rather special type of economy and does not consider
factors such as externalities, they found that it fails to deal with mechanisms that make
real economies work. The perfect competition that drives an economy under GE does not
reflect that among organisations in real markets where concentration of market power can
lead to imperfect competition and market failure. Moreover, economists tend to agree that
markets can malfunction and fail, which is a situation that can arise in artificial markets
such as those created to manage computational resources.

It is also argued that one well-designed market-based resource allocation mechanism
provides incentives for participation by ensuring that all the actors in the system maximise
their utility and do not have incentives to deviate from the designed protocol [44]. In
reality, designing such strategy-proof mechanisms is difficult, and resulting mechanisms
can allow participants with privileged information to disrupt or game the system in their
benefit [122].

Furthermore, in addition to the dispute surrounding the self-organisation properties
of markets, where they can acquire a functional structure or equilibrium without specific
interference of a central planner [17], evidence has shown that in real markets, if ever
reached, this equilibrium may lead to the impoverishment of large parts of the popula-
tion [111]. Therefore, mechanisms designed for artificial markets may display similar
malfunctioning and failure behaviours, thus undermining the allocation of the computer
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system’s resources.
In spite of these issues, market-based models for resource allocation can bring benefits

to existing Grid infrastructures. As pointed out by Shneidman et al. [163], many com-
puter systems have reached a point where the goal is not always to maximise utilisation;
instead, when demand exceeds supply and not all needs can be met, a policy for making
resource allocation decisions is required. Hence, market-based approaches are a good
choice to carry out policy-directed resource allocation. In addition, economics-inspired
mechanisms can allow resources to be quantified in terms of a common currency and ex-
changed by closed distributed systems belonging to different organisations. For example,
OurGrid [7], described earlier in this thesis, uses a common currency (i.e. favours) that
sites can use to account for the resources borrowed from one another.

It is also important to notice, as argued by Shneidman et al. [163], that when speaking
about real world markets, economists are hardly given the opportunity to deploy a market
or a whole economy, having to address issues of already existing economies. Previous
work has proposed a number of approaches that use economic models to address resource
usage and incentives in a Grid [10, 24, 28, 69, 70, 113]. It seems natural to consider mech-
anisms based on economic principles for the system presented in this thesis because it
comprises multiple Grids, established by different communities that are heterogeneous in
terms of goals, funding, priorities and quality of service requirements; economics-inspired
mechanisms can encourage participants to use resources in a wise manner. Therefore, this
thesis uses an economics-inspired mechanism, and evaluates system performance metrics
such as response time of both Grid and providers’ local jobs.

Resource Provisioning within Grids

As discussed earlier, two levels of contention for resources can arise in a scenario with
interconnected Grids. The first level, also termed intra-Grid, refers to the dispute between
the resource providers’ local users and users of the Grid. The second level, termed inter-
Grid, relates to the resource contention between Grid users and users from other Grids.
The proposed architecture and resource sharing mechanism aim to meet the requirements
of respecting administrative separation and dealing with resource contention at the inter-
Grid level. To minimise the resource contention at the inter-Grid level, Grids must employ
provisioning techniques to handle contention at the intra-Grid level. Addressing these two
levels of resource contention is important in order to achieve resource sharing between
Grids, as discussed earlier in Section 2.7 as Requirement 6.

However, as described beforehand, LRMSs commonly use optimisations such as job
backfilling. While these optimisations maximise resource utilisation, they make it difficult
to predict the resource availability over a given period as the jobs’ start and completion
times depend on the workloads. Existing work on mechanisms for sharing resources
abstract the availability information obtained from LRMSs. For example, AuYoung et
al. [11] have considered a scenario wherein service providers establish contracts with
resource providers. They have modelled the resource availability as ON/OFF intervals,
which correspond to off-peak and peak periods respectively. However, such models may
not represent the LRMSs’ load because it depends on the jobs’ characteristics [118].

Therefore, this thesis investigates mechanisms that gather information about the re-
source availability from typical LRMSs. We evaluate the precision of this information
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and its impact to check whether typical LRMSs can offer the information required for
resource sharing between Grids. Furthermore, the thesis proposes incremental changes
to scheduling mechanisms used by LRMSs to enable providers to provision resources to
a Grid and respect their local users. The thesis introduces strategies based on multiple
resource partitions, although extends existing multiple-partition approaches. It proposes a
new multiple-resource-partition policy based on load forecasts for resource provisioning.

These techniques have similarities with previous work. Singh et al. [166, 168] pre-
sented a provisioning model where Grid sites provide information about the periods over
which sets of resources would be available. They propose sites provide their resources to
the Grid in return for payments, hence presenting a cost structure consisting of fixed and
variable costs over the resources provided. The evaluation of the provisioning model con-
siders the scheduling of workflow applications. The main goal is to find a subset of the
aggregated resource availability, termed resource plan, to minimise both the allocation
cost and the application makespan. They utilise a Multi-Objective Genetic Algorithm
(MOGA) approach to approximate the group of resource plans that correspond to the
Pareto-optimal set. The experiments consider one cluster and one broker at a time. The
work in this thesis is different as it investigates multiple approaches to obtain availability
information and the reliability of this information in multiple-site environments. In addi-
tion, it provides additional provisioning strategies based on multiple resource partitions.

In the scope of some of the systems discussed earlier, mechanisms for flexible advance
reservations and generation of alternative time slots for advance reservation requests have
been proposed [154, 196]. Such approaches are useful for resource provisioning, and
the scenario described in this thesis can incorporate them to improve resource utilisation
and generate alternative offers should resource contention occur. However, we aim to
reduce the interaction between resource providers and InterGrid Gateways by allowing the
providers to inform the gateways about their spare capacity. This thesis therefore focuses
on how to obtain availability information from LRMSs and how reliable this information
is under different conditions.

Other approaches consider resource provider sites that use virtualisation technologies
to provide resources. For example, Padala et al. [137] apply control theory to address the
provision of resources to multi-tier applications in a data centre. Garbacki and Naik [87]
consider a scenario where customised services are deployed on virtual machines, which
in turn are placed into physical hosts. The provisioning scenario in Grids is, however,
different as it uses traditional queue-based LRMSs.

In regards to the use of virtualisation technology, this thesis has similarities with sys-
tems such as Shirako [102], VioCluster [157] and Virtuoso [164], but extends existing
work. It extends Shirako’s lease model by investigating techniques that allow resource
providers to supply gateways with the resource availability information described earlier
as a requirement for provisioning resources. Providing this availability information is sim-
ilar to issuing resource tickets in Shirako, therefore this thesis also provides techniques
that define how to create these resource tickets.
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2.8 Conclusion
This chapter investigated and classified systems that enable resource sharing among or-
ganisations and that can provide means for inter-operating Grids. The chapter also de-
scribed classifications on Virtual Organisations (VOs) with a focus on Grid computing
practices. In addition, it discussed background and related work on job backfilling tech-
niques, advance reservations, and scheduling using multiple resource partitions, which are
essential for a better understanding of the topics discussed in subsequent chapters.

The chapter presented the requirements for resource sharing between Grids and posi-
tioned this thesis with regards to existing work. As discussed in this chapter, the intercon-
nection of Grids presents itself with two instances of contention for resources. In the first
instance, resources from providers are allocated to users within a Grid. Such provisioning
should be performed without visible impact on the applications of users local to these re-
source providers. In the second instance, spare resources are shared between Grids, which
in turn should not impact users local to these interconnected Grids.

In the next chapters we describe an architecture that enables resource sharing between
Grids and related provisioning strategies, aiming to provide resources to Grid applications
without impacting the performance of providers’ local users.





Chapter 3

The InterGrid Architecture

As noted in Chapter 1, over the years several institutions and nations have created Grids
to share resources. These Grids are generally tailored to the requirements of the scientific
applications for which they have been created. In this chapter, we describe an architecture
to enable resource sharing across Grids based on the concept of peering arrangements
between Grids. This architecture provides the basis to create execution environments
using resources from multiple Grids. This chapter also describes the challenges involved
in provisioning resources from interconnected Grids to applications; topics explored in
subsequent chapters.

3.1 Introduction
The resource sharing in current Grids follows organisational models based on the idea
of Virtual Organisations (VOs) [82]; a VO is created for a specific collaboration and the
resource sharing is limited to within the VO. In addition, the resource control and en-
forcement of resource allocation policies in Grid-enabled VOs follow a job abstraction,
where users encapsulate their applications as jobs that are routed by schedulers to the re-
sources where they finally run. The schedulers strive to enforce VO or Grid-wide resource
allocation policies.

Grid computing does not follow principles of peering relationships or a structure of
networks of networks, which are generally present in other networked systems such as the
Internet [12, 123] and the World Wide Web [19]. This chapter presents an architecture for
resource sharing between Grids inspired by the peering agreements established between
Internet Service Providers (ISPs) in the Internet, whereby ISPs agree to allow traffic into
one another’s networks. The architecture, termed as InterGrid, relies on intermediate
parties called InterGrid Gateways that mediate access to the resources of participating
Grids. The chapter describes the underlying concept of Internet peering arrangements
before introducing the architecture and requirements for interconnecting Grids.

3.1.1 The Internet
The Internet began in 1969 as a small Defense Advanced Research Projects Agency
(DARPA) project that linked a few sites in the USA; growing to the millions of hosts and
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networks that comprise its current intricate topology [112]. Today’s Internet comprises
numerous ISPs; companies that offer their customers access to the Internet. Figure 3.1 il-
lustrates the interconnection between ISPs, with hosts connecting to ISPs through access
networks. In dial-up or broadband services, the local Public Switched Telephone Network
(PSTN) loop is usually utilised to give users access to the Internet. These local ISPs then
connect to regional ISPs, which in turn, connect to national and international ISPs, com-
monly termed as National Service Providers (NSPs) or Tier-1 ISPs. Tier-1 ISPs represent
the highest level of the Internet hierarchy and they are connected to one another either
directly or through Internet Exchanges (IXs). In this way, ISPs can provide services such
as Internet access, backbone, content, application, and Web hosting. This structure has
allowed the Internet topology to grow quickly and without the endorsement of a central
authority [112].

NSP B

NSP A

Local
ISP

Regional
ISP

Enterprise
Network

IX IX

Regional 
ISP Local

ISP

Regional 
ISPLocal

ISP

Figure 3.1: Interconnection of Internet service providers [112].

Currently, the Internet presents a structure composed of a vast number of physical net-
work connections established as a result of commercial contracts such as peering agree-
ments [123, 132]; legal contracts that specify the details of how ISPs exchange traffic.
The reasons for peering involve social, economical, and technological factors, although
ISPs need to consider their policies, economical advantages, and conflicts before estab-
lishing agreements [12]. There are various types of agreements, such as private, via IXs,
or in a relationship between customer and provider. These agreements can specify the
amount and proportion of traffic ISPs exchange, and the settlements since the Internet
traffic exchanged can be asymmetric. Tier-1 providers – ISPs that have access to the
global Internet – commonly establish non-charging contracts with other Tier-1 providers,
but charge smaller ISPs under a peering arrangement.

Another important concept is that of an Autonomous System (AS) [94], or network un-
der a single administrative domain with policies for diverting traffic, sometimes avoiding
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peering ASs. Border Gateway Protocol (BGP) allows ASs to advertise preferred routes
and enforce these traffic related policies. An AS can have policies incorporating shortest
or most cost-effective paths [72, 73]. Such policy-based routing or peering could also be
applicable to interconnected Grids, where a Grid can favour a peering Grid more than oth-
ers. In summary, the Internet has a set of standard protocols that allow traffic to flow from
one ISP to other ISPs. However, when ISPs interconnect their networks, they consider
incentives that include the increase in network coverage, profit, and quality of service
improvements.

Some important aspects to note about the structure of the Internet include:

• The Internet is a global network enabled by a common set of standard protocols
that allow interoperability among networks with different technologies, physical
network interconnections, and various peering arrangements.

• Although ISPs compete with one another, peering allows interconnected ISPs to
provide global connectivity, reduce traffic across an expensive boundary, and im-
prove the efficiency for their customers [12, 132]. In addition, its business model
benefits end-users and compensates service providers [100].

• Routing protocols divert traffic under unfavourable conditions according to routing
policies based on internal interests.

3.2 Peering Arrangements Between Grids
The Internet and Grids have a number of similarities. For example, both aim to provide
infrastructure and standard protocols that users can utilise to build and run their applica-
tions, and both have user applications that would benefit from increased network coverage
and greater resources. The cost reductions that ISPs derive from peering arrangements,
through factors such as decreased traffic across expensive links, are similar to the benefits
that Grids can derive from resource sharing and better resource management.

Considering that a Grid infrastructure is analogous to an ISP – both can be viewed
as networks composed of smaller networks – the agreements that Grids would estab-
lish and the policies they would need to enforce to guarantee interoperation of Grids
would be similar to those already studied and understood in the Internet community
[12, 13, 22, 86, 100, 123, 132, 194]. The game of peering, which comprises the strategies
that ISPs follow when their interconnect their networks, the viability of interconnecting,
and the accounting mechanisms required by these peering agreements, can be sources of
inspiration for deriving mechanisms for Grid interoperation.

We therefore argue that concepts applicable to ISP peering arrangements can be ap-
plied to Grid computing, and the rest of this chapter presents an architecture for connect-
ing Grids inspired by the manner in which ISPs establish peering arrangements.

3.3 Research Challenges
In recent years, the distributed computing realm has shifted significantly. Grid computing
has matured and commercial providers have emerged, offering resources to users in a
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pay-as-you-go manner [150, 193]. Similar to the Internet, resource providers are profit-
motivated; viewing each other as competitors or sources of revenue. Users, on the other
hand, are interested in using services at low price with good performance.

Furthermore, resource providers and consumers in different Grids can have different,
sometimes conflicting, interests. Hence, economy based models are relevant to inter-
connections of Grids because resource allocation can be achieved through the economic
behaviour of involved parties. Markets can provide incentives for providers to offer their
resources to Grids, and the settlements necessary between Grids. In this sense, some
research challenges described here have a certain focus on economic based policies and
mechanisms for interlinking Grids.

3.3.1 Co-ordination Mechanisms
Current resource allocation and scheduling mechanisms utilised by Grids are not co-
ordinated [20]. Different domains have their own resource brokers, schedulers, objec-
tives and requirements, and in many cases these entities do not exchange information
about their allocation decisions. Such divergent approaches can lead to scenarios with
bad schedules and inefficient resource allocation. As Ricci et al. [151] argue, for multi-
ple schedulers to co-exist in a large-scale testbed, they should co-ordinate their resource
allocation decisions. Peering arrangements can achieve co-ordination between Grids, fur-
ther enabling the execution of applications spanning multiple Grids. Additionally, co-
ordination may imply co-allocation of resources; for example, if resources from multiple
Grids are required to deploy a specific application, these resources may be needed at a
very specific period in the future.

3.3.2 Peering Arrangements
Within the Internet standard protocols ensure interoperability and enable a host to send
packets to any other Internet-connected host. Although ISPs interconnect, they place
varying costs on routes and consider various criteria to carry out inter-ISP routing [72, 73,
123, 194]. Asymmetry of the Internet traffic between ISPs can result in agreements with
settlements. Principles similar to the Internet’s policy-based routing apply to intercon-
nections of Grids in activities involving offloading and redirecting resource requests from
one Grid to another. However, there are important differences between packet routing and
redirection of Grid requests. While Internet routing has to consider only data packets,
Grid interconnection involves managing resource allocation requests that could involve
numerous attributes depending on the demands of user applications, thus adding greater
complexity.

Moreover, a Grid infrastructure has its policies regarding how resources are allocated
to users of that Grid and to peering Grids. For example, Grid A can provide a best-
effort service to a peering Grid B, in which Grid A tries its best to provide the resources
when Grid B needs to offload resource requests. Grid A expects some compensation
from Grid B for the resources provided. Grid A can have a different contract with Grid
C in which Grid A stipulates that it will provide a maximum 100 computing resources
for no more than 60 hours per month. Grid A may expect an equal compensation in
terms of computing resources from Grid C. These agreements and the settlements must be
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considered when a Grid requests additional resources from peering Grids. It is therefore
very important to investigate policies that define how much resource two interconnected
Grids can exchange, and how these policies are enforced. Furthermore, it is essential to
evaluate the impact of these peering agreements on the performance of Grid applications.

3.3.3 Integration of Accounting Systems
Operating systems and LRMSs normally have accounting systems to track resource usage
and assist the enforcement of utilisation policies [95, 105]. Accounting in clusters com-
monly assumes a homogeneous environment where the sharing of usage records among
different systems is hardly required. Heterogeneous systems, such as Grids, present ad-
ditional requirements, which include a standard format for exchanging basic accounting
and usage data [119].

Previous work [16, 160] has proposed Grid accounting systems where users are linked
to accounts on a bank and are assigned credits, or other form of currency, that correspond
to their allowed resource usage. Resource utilisation is mapped to credits, which are
deducted from the amount in the user’s account upon resource usage. Other systems
have mechanisms that allow sites to maintain usage information locally in the form of a
common currency within the Grid (e.g. favours) [7].

The interconnection of Grids might require the integration of accounting systems,
where Grids would need to agree upon the measurements for resource usage. The scenario
would further need the definition of a form of currency or credit common to all Grids or
a platform to promote the use of resources across Grids through exchange rates, thus
allowing each Grid to have its own local currency [24].

3.3.4 Pricing Schemes
The use of economic models in Grids for regulating the allocation of resources, goods,
and the use of services comes from observing the role of economic institutions in the real
world [24, 70, 113, 197]. However, the use of economic approaches requires providers
to price the provision of Grid resources, and users to express their resource demands in
terms of currency units; both of which have proven difficult. Therefore, if an economic
approach is used for sharing resources between Grids, studies are necessary in areas such
as resource pricing, modelling consumer’s utility, resource provider’s marginal cost of
allocation, and the benefits of providing resources.

3.3.5 Deployment of Applications across Grids
A multiple-Grid scenario requires application models capable of adapting to the environ-
ment’s dynamism. Applications can run on execution environments that span multiple
Grids and grow and shrink in terms of resource allocations. However, the flexibility of al-
locations is dependent on factors such as cost, time and overhead for changing allocations,
and underlying peering arrangements.

A software system is needed that allows the creation of execution environments for
various applications on top of the physical infrastructure provided by the participating
Grids. Peering arrangements established between the participating Grids can enable the
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allocation of resources from multiple Grids to fulfil the requirements of the execution
environments. However, this scenario identifies various requirements for an architecture,
mechanisms and peering strategies that allow:

1. Grids to interconnect and provide resources to one another as required;

2. Resource provision and sharing between Grids;

3. Application models that cope with the dynamics of interconnected Grids; and

4. Execution environments that span multiple Grids.

This chapter presents an architecture that aims to meet these requirements. The rest of
the thesis focuses on the second requirement in the list above, by providing mechanisms
for resource provisioning within Grids, and sharing between Grids. The requirements of
mechanisms for resource sharing between Grids have been described in Section 2.7.

3.3.6 Problem Description and Propositions
We notice that the Internet concept of a network of networks is missing in Grid comput-
ing. In addition, the Internet aims at simplicity and providing a common set of proto-
cols; while several of the existing Grid middleware have complex architectures. Benefits
from peering, such as reducing traffic, increasing revenues or using services, are reasons
adopted by ISPs for interconnecting their networks. The challenge is to identify architec-
tural changes needed to enable peering arrangements between Grids in a way that they can
employ different mechanisms and policies for inter-Grid resource sharing. Furthermore,
these mechanisms should bring benefits to users of participating Grids, perceived in terms
of improvements in the applications’ performance.

Based on these characteristics, we define the following goals or propositions:

• Provide an architecture for interconnecting Grids that resembles the peering ar-
rangements between ISPs. The architecture is described in the next section.

• With peering arrangements, define ‘pluggable’1 mechanisms for resource provi-
sioning and sharing to enable the deployment of applications across Grids. These
mechanisms are investigated in subsequent chapters.

3.4 InterGrid Architecture
This thesis proposes an architecture termed as the InterGrid to enable the deployment of
applications across multiple Grids. The InterGrid is inspired by the peering agreements
between ISPs. Figure 3.2 shows the main components for the InterGrid. The architec-
ture is a hierarchy with InterGrid Gateways (IGGs) on top co-ordinating resource sharing

1We use the term pluggable to represent a mechanism or protocol used as a plug-in. That is, it should
be possible to change the resource allocation scheme of the management system by simply plugging in
different software that implements the new scheme.
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between different Grids, followed by the Grid Resource Management Systems (GRMSs)
taking care of resource allocation using resource shares assigned by resource providers.

The InterGrid can enable peering of Grids and resource sharing. An application can
demand resources from different Grids and perform resource management of its own.
However, we argue that applications can have performance and environment isolation
provided by Distributed Virtual Environments (DVEs) that are deployed on top of the
InterGrid infrastructure [1, 156, 164]. DVEs provide users with a transparent network that
behaves like a dedicated computing and data infrastructure, requiring little or no changes
in existing Grid middleware and services. DVEs can span multiple Grids, and grow or
shrink in terms of resource consumption according to the demands of the applications
they encapsulate [158, 176, 177].

Figure 3.2: Architecture for interconnecting Grids.

3.4.1 Architectural Components
The proposed architecture integrates the resource allocation, represented by the InterGrid,
with the application deployment, performed through DVEs. This section presents details
about the components of this architecture. Note that the names of some components are
different from previous work in which the architecture was introduced [46]; the changes
aim to guarantee consistency throughout this thesis.2

Resource Providers (RPs)

RPs contribute a share of computational resources, storage resources, networks, appli-
cation services or other types of resources to a Grid. The allocated share is based on

2In previous work [46], a Grid Resource Management System (GRMS) was termed as an IntraGrid
Resource Manager (IRM); and a User Application (UA) was called a Client Application (CL).
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provisioning policies according to the providers’ perception of utility. The owner of a
cluster could allocate a share of the nodes in return for regular payments. An RP may
have local users whose resource demands need to be satisfied, yet it delegates provisioning
rights over spare resources to an InterGrid Gateway (IGG). This delegation is performed
by providing information about the resources available as free time slots.3 The resources
provided can be physical or virtual resources such as virtual machines. The delegation of
resources to an IGG can use a secure protocol such as Secure Highly Available Resource
Peering (SHARP) [86].

Grid Resource Management System (GRMS)

A GRMS represents the resource manager employed by the Grid middleware. The GRMS
is the point of contact for acquiring resources, and manages the different shares of re-
sources offered by the RPs to the Grid. The GRMS provides the IGG with access to the
resources managed through plug-ins developed to interface with the Grid middleware, en-
abling the different kinds of resource allocation policies (determined inside a Grid and
managed by the GRMSs) and peering arrangements (determined outside a Grid and man-
aged by the IGG) to be reconciled.

InterGrid Gateway (IGG)

A Grid has pre-defined peering arrangements with other Grids, managed by IGGs, and
through which they co-ordinate the use of resources from the InterGrid.4 An IGG is aware
of agreements with other IGGs; acting as a Grid selector by selecting a suitable Grid able
to provide the required resources, and replying to requests from other IGGs, consider-
ing its policies. IGGs with pluggable policies enable resource allocation across multiple
Grids. An IGG is chosen and maintained by a Grid administrator based on internal crite-
ria. As described later in Section 3.5, the IGG also interacts with other entities including
Grid Information Services (GISs), resource discovery networks, accounting systems, and
GRMSs within interconnected Grids. A GIS is located within a Grid and provides details
about the available resources, with accounting systems providing information on shares
consumed by peering Grids.

Key IGG functionality consists of:

• Resource selection: selects resources from peering Grid infrastructures according
to agreements between Grids, or based on resource selection policies defined by the
peering Grids. The IGG selects, negotiates with, acquires, and ranks resources from
peering Grids.

• Resource allocation: exposes the resources from a Grid to other peering Grids
based on the resource sharing policies. In addition, the resource allocation com-
ponent accepts or refuses requests from peering Grids based on these policies, ac-
counting information, and monitoring services.

3We present some techniques for obtaining information about free resources in Chapter 4.
4The assumption of pre-established arrangements is reasonable as current Grids need to reserve the

network links and set up the resources required. An example includes the interconnection of Grid’5000
with DAS-3 and NAREGI. More information is available at http://www.grid5000.fr
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• Peering policies: underlie resource selection and allocation among Grid infrastruc-
tures. These policies can be inspired by economic principles.

Distributed Virtual Environment Manager (DVE Manager)

We suggest that a user application (indicated as UA in Figure 3.2) can acquire resources
from the InterGrid by requesting the DVE Manager for the instantiation of a DVE. The
DVE Manager, on the user’s behalf, interacts with the IGG in order to acquire resources.
The DVE Manager also monitors the resources that join or leave the DVE, deploys the
services required by the user, and drives the adaptation of resource allocations based on
the user application’s demands. DVEs can accommodate existing Grid and virtualisa-
tion technologies by enabling dynamic overlay networks on top of the InterGrid, whose
topologies and allocations may change over time. The DVE Manager can deploy existing
Grid technology on the resources acquired for a DVE. The Grid middleware can provide
the information required by the DVE Manager to adapt a DVE’s topology or change its
allocations. For example, the size of a scheduler’s queue can provide the information
required to detect the demand for additional resources.

User Application (UA)

A user application utilises resources from the interconnected Grids. Two types of users
can exist in the InterGrid: those who deploy applications on resources from multiple
Grids (i.e. deployers) and users who utilise these applications (i.e. final users). Although
typically one and the same, they need not be.

A user application can acquire a slice of the InterGrid. In this way, a user application
can be a set of application services for which there are final users. In this case, the
user interested in deploying the application specifies the resources necessary, the required
application services, and possibly the Grid middleware that must be deployed on the DVE.
The final users can utilise the application once it is deployed.

3.4.2 Resource Allocation Model
This section illustrates how a user obtains resources from the InterGrid for an application.
While the application can implement its own resource management mechanism or utilise
existing Grid resource brokers, we envisage that the application can request a DVE Man-
ager to acquire resources from the InterGrid, create a DVE, deploy the required services,
and manage the resources in the DVE. The resource allocation across Grids uses the ab-
straction of containers or virtual machines. The workflow for resource allocation in the
proposed architecture is shown in Figure 3.3, and can be described as follows:

1. Periodically, an RP advertises resources as free-time slots in the registry provided
by the IGG. The advertisement is made through a delegation of the provisioning
rights over a set of resource shares.

2. A user shows interest in obtaining a number of resources to deploy an application.
The client contacts the DVE manager, to which it provides a description of the
required resources and the services to deploy.



56 Chapter 3. THE INTERGRID ARCHITECTURE

Resource 
Provider

Resource 
Provider

Resource 
Provider

InterGrid
Gateway

DVE
Manager User

Application

InterGrid
Gateway

1) Delegate
provisioning rights

6) Deploy
required services

6) Deploy
required services

2) Request DVE

1) Delegate
provisioning rights

3) Request
resources

5) Give
permission

4) Negotiate for resources
based on required service-level

and peering arrangements

5) Give permission

Figure 3.3: Resource allocation model for the proposed architecture.

3. The DVE Manager acquires resources, deploys the services, and manages the DVE
composed of the allocated resources. The DVE manager tries to acquire the re-
sources required by issuing requests to the IGG.

4. The IGG can provide all or part of the required resources based on the provisioning
policies. If the individual Grid is not able to provide the required resources for
performance or technical reasons, then the IGG selects a peering Grid in accordance
with peering agreements and policies, from which the resources can be allocated.

5. Once the IGG allocates the resources, the DVE is given a permission to use them.

6. At the desired time, the DVE Manager transfers the permission to RPs, describing
the share, the resources obtained, and the time duration of the permission. The
DVE manager contacts the obtained resources and deploys the services on the user’s
behalf.

Once the resources are allocated and the services deployed, the final users can make
use of the services and applications running on the DVE.

3.5 InterGrid Gateway Control Flow
This section presents the control flow within the IGG in detail. The IGG is the enabler for
the InterGrid, a key component for managing the agreements between Grids and enabling
co-ordinated resource allocation across Grids. The internal architecture of IGG is shown
in Figure 3.4.5 The control flow of this component is as follows:

1. RPs offer resources to a Grid by registering their availability with the IGG.
5The shaded components are studied in the remaining chapters.
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2. The IGG stores the information about the resources in a Resource Repository.

3. Requests received by the IGG are passed to the Scheduler.

4. The Scheduler considers the availability of resources, the provisioning and admis-
sion control policies, and the current Allocations when making a decision on which
resources to allocate to the DVE Manager.

5. If the current Grid does not have enough resources to provide, part or the whole
request is passed to the Resource Selector, which searches for a peering Grid that
can provide the required resources.

6. Descriptions of peering arrangements with other Grids, policies, and contracts are
stored in a repository or maintained by a contract management system represented
here by Peering. The Resource Selector utilises this data and resource informa-
tion obtained from resource discovery networks established between the Grids to
determine which peering Grid can provide the required resources.

7. Resource Discovery Networks (i.e. Resource Discovery), return a list of candidate
Grids that can provide the required resources. The Resource Selector uses the stored
policies and agreements, and the candidate resource list to determine which peering
Grid can provide the resources.

8. The Resource Selector reports to the Scheduler once it finds a peering Grid.

9. The Scheduler then passes the resource request to the IGG selected.

10. The selected IGG returns either:

• A list containing references to the resources it is willing to provide; or

• A reject message if the Grid does not have the required resources available.
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11. The Scheduler informs the DVE Manager about the list of resources allocated.

3.6 Resource Sharing and Provisioning Mechanisms

The previous sections have described the proposed architecture to enable resource shar-
ing between Grids and some research challenges. However, due to the complexity of
interconnecting Grids, this thesis focuses on two particular problems: resource sharing
between Grids and resource provisioning within Grids. This thesis considers that IGGs
have peering arrangements pre-established off-line requiring human intervention to con-
figure aspects such as network links and access to shared infrastructures.

To function correctly, the architecture requires resource providers being able to pro-
vide information about resources that are available for the Grid, and resource provision-
ing mechanisms that permit the allocation of resources from the InterGrid to the execu-
tion environments. Therefore, the first issue to address is how information is obtained
from providers such that resources can be safely provisioned to applications. Resource
providers must be able to query their job schedulers and estimate which resources are
available. With the information obtained from resource providers, IGGs can co-ordinate
the use of resources within the Grids they represent. Moreover, mechanisms and policies
that specify how interconnected Grids can share resources must be designed.

Furthermore, due to the increasing availability of commercial infrastructures, future
Grids are likely to comprise both commercial and non-commercial resource providers. In
this case, job scheduling and resource provisioning decisions must consider the cost of
using commercial resources.

3.6.1 Resource Control Schemes

Current Grids generally use job abstraction to control resources, routing an encapsulated
application as a job to the resource where it is executed. Server virtualisation technologies
permit more flexibility in resource management by enabling performance isolation, and
migration, suspension and resumption of virtual machines. It has also enabled resource
control techniques where units of work are virtual machines on which jobs can execute.

However, current Grids utilise batch schedulers and other scheduling systems that
use job abstraction. In the following chapters (Chapters 4 and 5), when we investigate
the resource provisioning mechanisms we do not distinguish between requests for virtual
machines and batch jobs, preferring to use the more general term request.

To realise the proposed architecture, we consider that the resource control between
Grids can be performed using the abstraction of containers, as demonstrated by Ramakr-
ishnan et al. [146]. Under this scenario, Grids exchange resources on which services are
deployed according to their peering policies. The resources allocated by one IGG from
another IGG are used to run virtual machines. We have made this choice during the im-
plementation of the system prototype as discussed in Chapter 7.
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3.7 Conclusion
This chapter described the InterGrid architecture and resource allocation model, which
enables the provisioning of resources from multiple Grids to applications and Grids to
connect with one another. The model is inspired by the way Internet Service Providers
(ISPs) establish peering arrangements with one another in the Internet. The nature of
these peering arrangements can vary. A flexible architecture based on InterGrid Gateways
(IGGs) allows for changes of the provisioning policies used by the scheduler component.

To realise the goals of this architecture, in the next chapters we investigate strategies
for provisioning resources within Grids, and introduce a mechanism for sharing resources
between Grids. Furthermore, we present a provisioning model that allows the capacity
of clusters participating in a Grid to be expanded by using resources from commercial
providers.





Chapter 4

Multiple-Site Resource Provisioning

This chapter describes scheduling strategies that enable an InterGrid Gateway to obtain
resource availability information from cluster resource managers to make provisioning
decisions. Several emerging Grid applications are deadline-constrained, therefore require
a number of computing resources to be available over a time frame, commencing at a
specific time in the future. To enable resources to be provided to these applications, it
is important to have a picture of cluster availability. Thus, the precision of the avail-
ability information is important as it may affect the applications’ performance. Commu-
nication overheads may make requesting availability information upon scheduling every
job impractical, therefore, in this chapter we investigate how the precision of availabil-
ity information affects resource provisioning in multiple-site environments. We want to
verify whether the proposed scheduling strategies based on multiple resource partitions
can provide sufficient information to carry out resource provisioning in multiple-site en-
vironments. The performance evaluation considers both multiple scheduling policies in
resource providers and multiple provisioning policies in the gateway, while varying the
precision of availability information.

4.1 Introduction
As discussed in Chapter 2, the collaborations that Grids enable often require resources
from multiple computing sites [82], which are generally clusters of computers managed
by queuing-based Local Resource Management Systems (LRMSs) [25, 117, 188].

The execution environments considered in this thesis require provisioning of resources
over well defined periods. Moreover, several emerging deadline-constrained Grid appli-
cations require access to several resources and predictable Quality of Service (QoS). A
given application can require a number of computing resources to be available over a
given period, commencing at a specific time in the future. However, given the LRMSs’
current practice of optimising the First Come First Served (FCFS) policy, through tech-
niques such as backfilling [128], to reduce scheduling queue fragmentation, improve job
response time, and maximise resource utilisation, it is difficult to predict resource work-
loads and guarantee the start or completion times of applications currently in execution
or waiting in the queue. Consequently it is difficult to predict resource availability over a
period and provision resources to these time-constrained applications.

61
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To complicate the scenario even further, users in a Grid may access resources via the
Grid resource management system using mediators such as brokers or resource gateways.
The design of gateways that can provision resources to deadline-constrained applications
using information given by current LRMSs is complex and prone to scheduling decisions
that are far from optimal. Moreover, it is not clear how gateways can obtain informa-
tion from current LRMSs to provision resources to QoS-demanding applications without
making resource provision just a consequence of scheduling.

Existing work on resource provisioning in Grid environments has used conservative
backfilling, where the scheduling queue fragments, also termed availability information
or free time slots, are given to a broker for provisioning [168]. However, the communica-
tion overheads may make requesting availability information upon scheduling every job
impractical.

This chapter investigates how the precision of availability information affects resource
provisioning in multiple-site environments (i.e within Grids). In addition, we enhance
traditional schedulers to allow the gathering of availability information required by an
InterGrid Gateway for resource provisioning. We evaluate the reliability of the provided
information under various conditions by measuring the number of provisioning violations.
A violation occurs when the information given by the resource provider proves to be
incorrect when the gateway acts on it. We evaluate the impact of provisioning resources
to Grid applications on providers’ local requests by analysing the job bounded slowdown
[74]. We also investigate whether aggressive backfilling [116] and scheduling strategies
based on multiple resource partitions offers benefits over conservative backfilling if job
backfilling is delayed, enabling large time slots to be provided to the gateway.

4.2 Multiple-Site Resource Provisioning
The multiple-site provisioning scenario is depicted in Figure 4.1 along with the entities
considered in this chapter. This section describes the interactions between the entities
whereas Chapter 3 provides details about the InterGrid architecture.

Figure 4.1: Resource providers contribute to the Grid but have local users.

A Resource Provider (RP) contributes a share of computational resources to a Grid
in return for regular payments. An RP has local users whose resource demands need
to be satisfied, yet it delegates provisioning rights over spare resources to the InterGrid
Gateway (IGG) by providing information about the resources available in the form of
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free time slots. A secure protocol, such as Secure Highly Available Resource Peering
(SHARP) [86], could guarantee the authenticity and non-repudiation of these delegations.
However, we focus on the resource provisioning aspect. A free time slot obtained by
examining the status of the jobs in the scheduling queue, describes the:

• Number of resources available;

• Configuration of the processors/computing nodes available;

• Start time from which the processors would be free to use; and

• Fnish time from which the processors would no longer be available.

In the InterGrid, a Grid can have peering arrangements with other Grids managed by
IGGs through which they co-ordinate the use of resources. In this chapter, however, we do
not consider peering arrangements [46]; but rather investigate how an IGG can provision
resources to applications based on the availability information given by RPs.

4.2.1 Problem Description and Propositions

An IGG attempts to provision resources to meet its users’ needs, improve the job slow-
down and minimise the number of violations. A violation occurs when a user tries to use
the resources allocated by the IGG but they are no longer available due to wrong or im-
precise availability information given by the resource providers. Resource providers are
willing to increase the resource utilisation, including via IGGs, without compromising
their local users’ requests.

Therefore, we would like to specifically verify the following propositions:

• The use of free time slots information can allow for resource provisioning that pro-
vides better response time to Grid jobs.

• The use of aggressive backfilling with multiple resource partitions can allow for
better provisioning and reduce a jobs’ response time if the backfilling is delayed
and larger free time slots are offered to the IGG.

4.2.2 Types of User Requests

We make a few assumptions about the types of requests that an IGG receives: a request
is contiguous and needs to be served with resources from an individual provider, contains
a description of the required resources and the time duration over which they are needed,
and can demand either QoS or a best-effort service. A QoS constrained request has an
execution estimate, a deadline, and a ready time before which the request is not available
for scheduling, while a best-effort request has an execution time estimate but no deadline.
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4.3 Provisioning Policies

We have extended traditional scheduling policies in order to obtain the availability in-
formation from resource providers in the form of free time slots. The policies utilise an
‘availability profile’ similar to that described by Mu’alem and Feitelson [128], which is
a list whose entries describe the CPU availability at particular times in the future. These
entries correspond to the start or completion times of jobs and advance reservations. A
job A whose start time or completion time coincides with either the start or completion of
another job B, may share entries with B in the profile.

Extending the idea of availability profile, we have implemented a profile based on
a Red-Black tree that uses ranges of available processors/nodes rather than examining
the availability of individual processors.1 By scanning the availability profile and using
load forecasts, the resource providers obtain the information about the free time slots
and supply this information to the gateway. The gateway in turn can make provisioning
decisions based on this information.

Although this thesis presents extensions to existing LRMSs for releasing resource
availability information, throttling policies (e.g. those related the users’ resource con-
sumption) may make it difficult to obtain the free time slots. These policies commonly
reflect users’ or user groups’ usage quotas and priorities, which derive from other fac-
tors such as research grants, an organisation’s perception of urgency or importance, and
characteristics of the user population. In addition, these policies may change from time
to time. Therefore, there is certain complexity in announcing the free time slots available
for a particular user. The existing literature on scheduling of parallel jobs often ignores
these policies when modelling resources and evaluating scheduling algorithms because it
is difficult to compare the performance of different algorithms as they may be favoured
by specific throttling conditions. These issues can be circumvented by techniques such as
those described for multiple-resource partitions in Section 4.3.2.

4.3.1 Conservative Backfilling Based Policies

Under conservative backfilling, a job is used to backfill and start execution earlier than
expected, given that it does not delay any other job in the scheduling queue [128]. To
reduce complexity, the schedule for the job is generally determined at its arrival and the
availability profile is updated accordingly. Free time slots can be determined by scanning
the availability profile. This approach, depicted in Figure 4.2, is also used by Singh et
al. [166, 168].

With conservative backfilling, the availability profile is scanned until a time horizon,
thus creating windows of availability, or free time slots; the finish time of a free time slot
is either the completion time of a job in the waiting queue or the planning horizon itself.
If the horizon is set to∞, the provider will disclose all the information. The availability
information can either be provided on a periodical basis, wherein provider and gateway
agree on an interval at which the former sends the availability information, or upon the
gateway’s request. This thesis explores both scenarios.

1This extended profile is described in Appendix A.
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Figure 4.2: Obtaining free time slots under conservative backfilling.

4.3.2 Multiple Resource Partition Policies

This thesis presents three policies based on multiple resource partitions. These policies
divide the resources available in multiple partitions and schedule jobs to these partitions
according to predicates. The first policy we propose uses conservative backfilling, and
one partition A can borrow resources from another partition B when they are not in use by
B and borrowing is permitted by the scheduler.

The second policy implements the aggressive backfilling scheme described by Law-
son and Smirni [114]. In this case, each partition uses aggressive backfilling and has a
pivot, which is the first job in the waiting queue for that partition. A job belonging to a
partition can start its execution if it does not delay the partition’s pivot and the partition
has sufficient resources. If insufficient resources, the job can still commence execution if
additional resources can be borrowed from other partitions without delaying their pivots.
Additionally, the policy uses priority scheduling where the waiting queue is ordered by
priority when the scheduler is backfilling. To evaluate this policy, we attempt to maintain
Lawson and Smirni’s configuration [114] which selects partitions according to the jobs’
runtimes. The partition p ∈ {1, 2, 3} for a job is selected according to Equation 4.1, where
tr is the job’s runtime in seconds.

p =


1, 0 < tr < 1000

2, 1000 6 tr < 10000

3, 10000 6 tr

(4.1)

This thesis also introduces a new policy (i.e. the third option) depicted in Figure 4.3,
where the scheduler resizes the partitions at time intervals based on load forecasts com-
puted from information collected at previous intervals. In addition, the policy can alter-
nate between aggressive backfilling and conservative backfilling. As load forecasts are
prone to be imprecise, when the scheduler resizes partitions, it also schedules realloca-
tion events. At a reallocation event, the scheduler evaluates whether the load forecast has
turned out to be an underestimation; if underestimated, the policy resizes the partitions
according to the load from the last resizing period and backfills the jobs, starting with the
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local jobs. The policy uses aggressive backfilling with a configurable maximum number
of pivots, similarly to the MAUI scheduler [104]. This allows the scheduler to convert the
backfilling strategy to conservative by setting the number of pivots to a large value, here
represented by∞.
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Figure 4.3: Obtaining free time slots using multiple resource partitions.

Algorithm 4.1 describes two procedures used by the load forecast policy. The pol-
icy invokes getFreeTimeSlots every time the provider needs to send the availability in-
formation to the gateway. Procedure getFreeTimeSlots schedules a later call to reallo-
cationEvent to verify whether the previous forecast has turned out to be precise or if a
reallocation is required.

Line 3 and 4 of Algorithm 4.1 change the scheduler’s backfilling strategy to conser-
vative by setting the number of pivots in each partition to ∞. They also schedule the
jobs currently waiting in the queue. The algorithm then changes the scheduler’s back-
filling strategy to aggressive (line 5). From line 6 to 10, the scheduler obtains the load
forecast and the free time slots and resizes the free time slots by modifying the number of
CPUs according to the number of resources expected to be available over the next interval.
Next, the scheduler triggers a reallocation event. From line 20 to 24 the scheduler verifies
whether the forecast was underestimated. If so the scheduler turns its backfilling strategy
back to conservative and informs the gateway about the availability.

4.3.3 IGG Provisioning Policies
The provisioning policies described earlier are suitable for resource providers to obtain the
resource availability information and supply it to the IGG. Figure 4.4 depicts the informa-
tion that the IGG has about the availability of resources from the providers. In order to
store this availability information, the IGG uses a table of tree-based availability profiles.
Appendix A presents details about the tree-based availability profile.

At the gateway level, the policies we consider are as follows:

• Least loaded resource: the gateway submits a job to the least loaded resource
based on utilisation information sent by the resource providers every ten minutes.
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Algorithm 4.1: Provider’s load forecasting policy.
procedure getFreeTimeSlots()1

begin2

set the number of pivots of local and Grid partitions to∞3

schedule / backfill jobs in the waiting queue4

set the number of pivots of local and Grid partitions to 15

actualLoad← load of waiting/running jobs6

forecast← get the load forecast7

percToProvide← min{1− forecast, 1− actualLoad}8

slots← obtain the free time slots9

slots← resize slots according to percToProvide10

if percToProvide > 0 then11

inform gateway about slots12

schedule reallocation event13

schedule next event to obtain free time slots14

end15

procedure reallocationEvent()16

begin17

localLoad← obtain the local load18

forecast← get the previously computed forecast19

if localLoad > forecast then20

set the number of pivots of local partition to∞21

schedule / backfill jobs in the waiting queue22

set the number of pivots of Grid partition to∞23

schedule / backfill jobs in the waiting queue24

slots← obtain the free time slots25

inform gateway about slots26

else27

schedule the next reallocation event28

end29

• Earliest start time: this policy is employed for best-effort and deadline-constrained
requests when the resource providers are able to inform the IGG about the free time
slots. When scheduling a job using this policy, the scheduler is given the job and
provider’s availability information. If the providers send the information at regular
time intervals, this information is already available at the IGG. Otherwise, the IGG
requests it from the resource providers. If the job is not deadline-constrained, the
IGG selects the first provider and submits the job to it. When the job is deadline-
constrained, the IGG attempts to make a reservation for it. If the provider cannot
accept the reservation, the provider updates its availability information at the IGG.
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Figure 4.4: Selection of time slots by the InterGrid Gateway.

4.4 Performance Evaluation

4.4.1 Scenario Description

The experiments described in this chapter model the DAS-2 Grid [43] configuration be-
cause job traces collected from this Grid and its resources’ configuration are publicly
available and have been previously studied [101]. The multiple-site scenario simulated
is depicted in Figure 4.5. DAS-2 is a Grid infrastructure deployed in the Netherlands
comprising 5 clusters. The proposed techniques are evaluated through discrete-event sim-
ulation using GridSim, which has been extended to enable the scheduling of parallel jobs.2

Simulations can provide a controllable environment that enables us to carry out repeatable
experiments. In addition, as Grids are generally in use as testbeds or in production running
scientific applications, it is difficult to gain administrative rights required to experiment
with different scheduling strategies.

The resource providers’ workloads have been generated using Lublin and Feitelson’s
workload model [118], hereafter referred to as Lublin99. Lublin99 has been configured
to generate four-month-long workloads of type-less jobs (i.e. we do make distinctions be-
tween batch and interactive jobs). The maximum number of CPUs used by the generated
jobs of a workload is set to the number of nodes in the respective cluster. Grid jobs’ arrival

2More information available at: http://www.gridbus.org/intergrid/gridsim.html
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Figure 4.5: Multiple-site environment evaluated by the experiments.

rate, number of processors required and execution times are modelled using DAS-2 job
trace available at the Grid Workloads Archive.3,4 The jobs’ runtimes are taken as runtime
estimates. Although this may not reflect the reality, it provides the basis and bounds for
comparison of scheduling approaches [74].

To eliminate the simulations’ warm up and cool down phases from the results, we
discard the first two weeks of the results and the last simulated event is the arrival of
the last job submitted in any of the workloads. For the forecast-based policy, the second
week is used as the training period. We randomly select the requests that are deadline-
constrained. To generate the request deadlines we use a technique described by Islam et
al. [103], which provides a feasible schedule for the jobs. To obtain the deadlines, we
use the same Grid environment to perform the experiments using aggressive backfilling at
the resource providers and ‘submit to the least loaded resource’ policy at the gateway. A
request deadline is the job completion under this scenario multiplied by a stringency fac-
tor. The load forecasting uses a weighted exponential moving average [93], considering
a window of 25 intervals.

Performance Metrics

One of the metrics considered is the bounded job slowdown (bound=10 seconds), here-
after referred to as job slowdown [74]. In fact, the experiments measure the bounded
slowdown improvement ratio R given by Equation 4.2, where sbase is the job slowdown
using a base policy used for comparison; and snew is the job slowdown resulting from the
evaluated policy. The experiments calculate the ratio R for each job and then take the
average. The graphs presented in this section show average ratios.

R =
sbase − snew

min(sbase, snew)
(4.2)

The experiments also measure the number of violations and messages exchanged be-

3Grid Workloads Archive website: http://gwa.ewi.tudelft.nl/pmwiki/
4Specifically, the experiments use the interval from the 9th to the 12th month.
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tween providers and the IGG to schedule Grid jobs. The reduction in the number of mes-
sages required is used to estimate the trade-off between precision of information and com-
munication overhead. A given job j faces a violation when the inequality jpst − jgst > T
is true, where jgst is the job start time assigned by the gateway based on the free time slots
given by providers; jpst is the actual job start time set by the provider’s scheduler; and T
is a tolerance time. The experiments use a T of 20 seconds. A violation also occurs when
a resource provider cannot accept a gateway’s reservation request.

Policy Acronyms

We abbreviate the name of the evaluated policies in the following manner. A policy name
comprises two parts separated by +. The first part represents the policy employed by the
provider; the second is the IGG policy. On the resource provider’s side, Ar stands for
Advance reservation, Eb for aggressive backfilling, Cb for Conservative backfilling, M
for Multiple partitions, and Mf for Multiple partitions with load forecast. For the IGG’s
policy, least-load means ‘submit to the least loaded resource’, earliest represents ‘select
the earliest start time’, partial indicates that providers send free time slot information to
the IGG on a periodical basis, and ask means that the IGG requests the free time slot
information before scheduling a job. For example, ArEbMf+earliest-partial indicates
that providers support advance reservation, aggressive backfilling, multiple resource par-
titions, and load forecasts; whereas the IGG submits jobs selecting the earliest start time
based on the availability information sent by providers at regular intervals.

4.4.2 Experimental Results

The first experiment measures the number of messages required by the policies support-
ing advance reservation and conservative backfilling (i.e. ArCb). Some policies request
the free time slots from providers and in others the time slots are informed by providers at
time intervals. This experiment investigates whether the number of messages required can
be reduced by making the resource providers publish the availability information at gate-
ways at time intervals. The experiment varies the interval for providing the availability
information, then measures the number of violations and average job slowdown to check
the trade-off between the precision of scheduling decisions and the freshness of informa-
tion. The planning horizon is set to∞, hence a provider always informs all the free time
slots available. In addition, advance reservations use a two phase commit protocol. The
time interval for providing the time slots to the gateway is described in the last part of the
name of the policies (e.g. 15 min., 30 min.). The stringency factor is 5 and around 20%
of the Grid requests are deadline-constrained.

Figure 4.6a shows that for the policy in which the gateway asks for the time slots upon
scheduling every job (i.e. ArCb+earliest-ask), the number of messages is larger compared
to other policies. In contrast, policies that report the free time slots at regular intervals or
when an advance reservation request fails, result in a lower number of messages.

The number of violations increases as providers send the availability information at
larger intervals (Figure 4.6b). If scheduling is made based on information provided ev-
ery 15 minutes, the number of violations is 973, which accounts for 0.43% of the jobs
scheduled. To evaluate whether these violations impact on the resource provisioning for
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Figure 4.6: ArCb+earliest-* policies: (a) number of messages; (b) number of violations;
and (c) average job slowdown.

Grid jobs, the experiments measure the average bounded slowdown of Grid jobs (Fig-
ure 4.6c). As shown in the figure, there is an increase in the job slowdown as the interval
for providing the free time slots increases. However, when the providers send availability
information every 15 minutes, the average slowdown is improved. We conclude that for a
Grid like DAS-2, where providers send the availability information at intervals of 15 to 30
minutes, resource provisioning is possible using a simple policy supporting conservative
backfilling.

The second experiment measures the average of jobs ratio R described in Equa-
tion 4.2. The values presented in the graphs of this section are averages of five simulation
rounds, each round with different workloads for providers’ local jobs. The set of poli-
cies used as the basis for comparison comprises aggressive backfilling in the providers
and ‘submit to the least loaded resource’ in the IGG. The resource providers send the
availability information to the gateway every two hours. This experiment does not con-
sider deadline-constrained requests, as they could lead to job rejections by some policies,
which would then impact on the average bounded slowdown.
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Figure 4.7: Slowdown improvement ratio: (a) Grid jobs and (b) providers’ local jobs.

The results show that conservative backfilling and ‘least loaded resource’ policies (i.e.
ArCb+least-load and ArCbM+least-load) tend to degrade the bounded slowdown of Grid
jobs (Figure 4.7a). Submitting a job to the least loaded resource, where utilisation is
computed by checking current CPU usage, does not ensure immediate start of the job
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because other jobs in the waiting queue may have been already scheduled. Moreover, the
gateway is not aware of the time slot the job will actually utilise.

 8

 10

 12

 14

 16

 18

 20

 22

15 min.
30 min.

1 hour
2 hours

6 hours
12 hours

1 day

Ra
tio

 

Planning Horizon Duration

Slowdown Improvement Ratio of Providers’ Local Jobs
ArCb+earliest-partial

ArCbM+earliest-partial
ArEbMf+earliest-partial

Figure 4.8: Slowdown improvement ratio of providers’ local jobs.

The multiple resource partition policies with conservative backfilling without priori-
ties and providing the free time slots to the gateway improve the average slowdown of both
Grid jobs (Figure 4.7a) and providers’ local jobs (Figure 4.8). ArEbM+least-load, pro-
posed by Lawson and Smirni [114], improves the slowdown of local jobs (Figure 4.7b);
but not the slowdown of Grid jobs as the original implementation of this policy gives
higher priority to local jobs. The aggressive backfilling policy that resizes the resource
partitions according to load estimates (i.e. ArEbMf+earliest-partial) improves the slow-
down of both Grid jobs (Figure 4.7a) and providers’ local jobs, but not as much as other
multiple partition policies.

The last experiment varies the intervals for providing the free time slots. Figure 4.8
and Figure 4.9 show that for small planning horizons, the multiple resource partition pol-
icy with aggressive backfilling and load estimates (i.e. ArEbMf+earliest-partial) improves
the average ratio, but not as much as the other policies. However, as the time interval for
providing the availability information increases, the policy outperforms the other poli-
cies. For example, there is a sharp decrease in the ratios of the conservative backfilling
policy (i.e. ArCb+earliest-partial) and the multiple partition aggressive backfilling policy
(i.e. ArEbM+earliest-partial). The slowdown of the forecast-based policy improves com-
pared to the other policies when the interval increases, possibly due the policy becoming
multiple-partition with conservative backfilling when a load estimate is wrong. In a long
interval, when an incorrect estimate is identified, there may be quite a lag before the policy
resumes aggressive backfilling at the next interval; this conservative backfilling provides
a better job slowdown. Updating availability in the middle of an interval may also provide
an advantage over the other policies, however this has not been investigated during this
thesis research. Better load forecast methods might further improve the jobs slowdown
under varying intervals; again, not investigated during this research.
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Figure 4.9: Slowdown improvement ratio of Grid jobs.

4.5 Conclusion
This chapter investigated resource provisioning in multiple-site environments, evaluating
whether it is possible to provision resources for Grid applications based on availability
information given by resource providers using existing resource management systems.

We presented simulation results that show that in an environment like DAS-2, a gate-
way can provision resources to Grid applications and achieve better job slowdown if re-
source providers inform the available time slots, at time intervals between 15 and 30 min-
utes. The experimental results showed that it is possible to avoid requesting availability
information for every Grid job scheduled, thus reducing the communication overhead.

Multiple resource partition policies can improve the slowdown of both local and Grid
jobs if conservative backfilling is used. In addition, the scheduling policy based on multi-
ple resource partitions, aggressive backfilling, and load forecasts enabled the provision of
larger free time slots, producing a balance of performance between the Grid jobs and the
providers’ local jobs.





Chapter 5

InterGrid Resource Provisioning

As the resource utilisation within a Grid has fixed and operational costs, a Grid can bene-
fit by redirecting requests to another Grid, thus reducing the cost of over-provisioning. In
this chapter, we enable load management across Grids through inter-Grid resource sharing
and consider the cost of one Grid acquiring resources from another. However, enabling
resource sharing among Grids is a challenging task: a Grid should not compromise the
performance of its local user communities’ applications, yet can benefit from providing
spare resources to other Grids. The load management mechanism and related policies con-
sider the economic compensation of providers for the resources allocated. Experimental
results show that the mechanism achieves its goal in redirecting requests, increasing the
number of user requests accepted and balancing the load among Grids.

5.1 Introduction
A Grid infrastructure is expensive to maintain as resource utilisation incurs fixed and op-
erational costs, such as electricity, system administrators, or compensation to resource
providers. Consequently, there can be financial benefits for a Grid to provide spare capac-
ity to peering Grids, or acquire resources from peering Grids to service occasional inter-
nal peak demands. Such cross-Grid load management could reduce the costs incurred by
over-provisioning, and provide the means for provisioning resources from multiple Grids
to applications.

Enabling resource sharing between Grids, however, is complex due to the autonomy
within each Grid for capacity planning and provisioning of resources to user communities.
There is contention for resources and dynamicity of shares supplied by resource providers
within each Grid. The main challenges when designing a load sharing mechanism are
how a Grid can (i) meet the demand for resources by local user communities; (ii) co-
ordinate with other Grids to acquire additional resources to satisfy excess demands; and
(iii) provide spare resources to other Grids, preferably in return for payments.

This chapter investigates a resource sharing mechanism that takes into account the
economic compensation of resource providers and considers the cost for one Grid to ac-
quire computational resources from another. The proposed mechanism allows a Grid to
redirect a request to a peering Grid when the cost of serving it locally is higher than the
price the Grid would pay for the peering Grid to process the request. The redirection takes
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place between Grids that have a pre-established peering arrangement. Experiments eval-
uate the proposed mechanism in terms of load balancing across the Grids, the increase in
the overall request acceptance rate, and the response time of Grid applications.

5.2 Provisioning in InterGrid Environments
Chapter 3 has introduced the InterGrid architecture based on gateways that mediate re-
source exchange between Grids. It allows participants to seamlessly allocate resources
from different Grids. Chapter 4 has explored a scenario in which one InterGrid Gate-
way (IGG) provisions resources from one Grid based on availability information given
by resource providers. This chapter extends this scenario to consider multiple IGGs and
consequently multiple Grids.

The environment considered in this chapter is depicted by Figure 5.1. A Resource
Provider (RP) has local users whose resource demands need to be satisfied, yet it delegates
provisioning rights over spare resources to an IGG by providing information about the
resources available in the form of free time slots. A free time slot includes information
about the number of resources available, their configuration and period over which they
would be available.

Figure 5.1: Provisioning scenario with multiple Grids considered in this chapter.

Moreover, we consider the case in which a Grid has pre-defined peering arrangements
with other Grids, managed by IGGs and, through which they co-ordinate the use of re-
sources of the InterGrid. An IGG is aware of the terms of the peering arrangements
with other Grids, selects a suitable Grid capable of providing the required resources, and
responds to requests from other IGGs. The peering arrangement between two Grids is
represented as a contract that specifies a price range for the resources allocated from one
another. Request redirection policies determine which peering Grid is selected to process
a request and at what price the processing is performed.

When a Grid user needs to deploy or execute an application, she requests the IGG for
a number of resources. When the individual Grid cannot provide the required resources,
the IGG selects a peering Grid based on the agreements and the policies in place. The
user is then given a resource ticket granting access to the resources, which is passed to the
selected provider in return for the required resources.
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5.2.1 Types of User Requests
A request corresponds to an individual job whereas an application can comprise several
jobs. A request is contiguous and needs to be served with resources from a single re-
source provider. Allowing the request to be served with resources from multiple resource
providers could require co-allocation, which is not addressed here. A request received by
an IGG contains a description of the required resources and the usage time. The request
can require a best-effort service, meaning that the resources can be provided at any time
as long as they are made available for the requested usage time. Alternatively, the request
can be deadline-constrained, so resources need to be allocated within a specified period.

5.2.2 Problem Description and Propositions
The peering agreements between Grids define which resources are exchanged between the
Grids and the price of the resources exchanged. The policies specify when an IGG redi-
rects requests to another, and when a request redirected by one IGG is accepted by another
IGG. The goal of a participating IGG is to (i) serve its user communities by providing al-
locations that assign resources to satisfy their requirements; (ii) offer spare resources to
peering Grids preferably under some compensation; and (iii) acquire resources from other
Grids under peak load conditions to satisfy its users.

Specifically, we would like to verify the following propositions:

• Load balancing can be achieved by a mechanism that takes into account the marginal
cost of accepting or redirecting requests across the interconnected Grids.

• A mechanism based on requests’ marginal cost of allocation can enable the pro-
visioning of resources from multiple Grids to applications and improve the jobs’
response times.

• The provisioning schemes studied in Chapter 4 provide the resource availability
information required to carry out resource sharing decisions, thus improving the
response time of Grid jobs without sacrificing providers’ local jobs.

5.3 Resource Provisioning and Load Sharing
The adoption of economic principles for load sharing amongst Grids comes from observ-
ing how economic institutions in the real world regulate the allocation of resources, goods
and the use of services [24]. Economic approaches can cope with problems like provid-
ing Grid resources to different users with diverging quality-of-service requirements, and
how to reward resource suppliers. As described beforehand, the interconnection of Grids
involves problems that are similar to those faced by ISPs peering in the Internet. ISPs
operate to make a profit – they see one another as competitors or sources of revenue – but
they interconnect their networks for economic or technical reasons [12, 13, 39, 194]. ISPs
have fixed and variable costs with network infrastructure, yet interconnect their network
domains to benefit from having a larger network coverage or offloading expensive links.
Similarly, the use of Grid resources has fixed and variable costs. This section describes a
mechanism for request redirection amongst Grids that considers their cost.
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For each IGGi, the allocation of its resources by its user communities over a unit
of time represents a cost. The real-valued total cost function of IGGi is represented by
costi(L), where 0 6 L 6 1 is the current load determined by the number of resource
units available in its Grid. For simplicity, a resource unit corresponds to one resource per
second (i.e. a second of a CPU). Therefore, the total cost given by costi(L) depends on the
number of resources allocated. Although each Grid could have its own cost function, in
this thesis the participating Grids utilise a quadratic cost function. Such a function reflects
a network infrastructure that does not offer any provision for handling peak demands,
consequently it is very costly to keep the resources operating at full capacity. A function
with a steep cost when the system approaches full utilisation therefore reflects current
computing and network infrastructures. Moreover, a non-linear function is required to
specify contracts with price ranges, as discussed later in this section.

The cost function costi(L) is given by [Lunits∗(pcost+(pcost∗(βL)2))], where Lunits is
the number of units in use at load L, β is a small constant value that determines how steep
the cost curve is as the load approaches 1 and pcost is the average price that IGGi pays to
resource providers for a resource unit. The price of a resource unit within IGGi is given
by the second part of the cost function (i.e. pcost + (pcost ∗ (βL)2). We derive the average
price pcost paid by IGGi to resource providers for a resource unit using Equation 5.1:

pcost =
n∑
i=1

(
cpi

(
rui∑n
j=1 ruj

))
(5.1)

where n is the number of resource providers in IGGi’s Grid; cpi is the price of a resource
unit at resource provider i; and rui is the number of resource units contributed by provider
i until a given time horizon, or request deadline. When updating the prices for resource
units specified in the contracts, the horizon is the time of the next contract update (i.e. the
next time when the IGGs update the prices of units negotiated). In this way, L depends on
how many resource units are available from the start time until the horizon and how many
units are in use.

A request redirection is decided based on the per request costmci : (u, L)→ < which
is the increment in total cost for IGGi for agreeing to provide resource units required by
request u given its current load or allocations. If request u requires resource units that
place uload load in IGGi’s Grid, then the cost of serving u is derived by Equation 5.2. If
request u requires one resource unit, then the request cost is equal to a unit cost.

mci = costi(L+ uload)− costi(L) (5.2)

IGGi has a load threshold, if crossed, IGGi considers itself overloaded. The redi-
rection of requests is enabled between Grids that have negotiated contracts, at within
the contracted price range. A contract Ci,j between IGGi and IGGj has a price range
PR(Ci,j) : [pricemin, pricemax], where pricemin and pricemax are the minimum and max-
imum prices respectively paid by IGGi for a resource unit allocated from IGGj . IGGi

can have contracts with multiple Grids. During periods of peak load, IGGi can redirect
requests to IGGj if and only if both have a contract. Based on the current load levels,
they agree on a final price pricefinal within PR(Ci,j). IGGi pays the amount equivalent
to (pricefinal∗ number of units). The redirection occurs when a Grid forwards requests
to another Grid because the cost of fulfilling the requests is higher than the charge for
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another Grid to service them.

5.3.1 Contract Types
The proposed mechanism supports two kinds of contracts: fixed price and price range con-
tracts. A fixed price contract is given by PR(Ci,j) : [pricemax, pricemax] where pricemax
is the fixed price and a price range contract corresponds to PR(Ci,j) : [pricemax −
∆, pricemax], where ∆ determines the price range. In the case of price range contracts,
participating Grids have to negotiate the final price at runtime. As discussed by Balazin-
ska et al. [14], a load management mechanism based on fixed price contracts may present
disadvantages in some cases. For example, it reduces the flexibility in redirecting requests
as a Grid can only offload requests if its cost of allocation is higher than the price it would
pay to another Grid (i.e. the number of resource units required by the request multiplied
by the unit cost specified in the contract).

The price range for a resource unit is determined by the decrease of load k from the
load L. Let u be a request that requires uunits resource units and causes an increase in load
uload. The decrease in the per-unit cost due to removing k from the Grid’s L is represented
by δk, which is defined by Equation 5.3.

δk(L) =
mc(u, L− uload)−mc(u, L− k − uload)

uunits
(5.3)

δk is the approximate difference in the cost function evaluated at the load level including
and excluding load k. Given a contract with fixed price pricemax, L is the maximum load
that an IGG can approach before its per resource unit cost exceeds pricemax. In order
to estimate the price range for a resource unit in the contracts, the experiments presented
in this chapter take L as the load threshold; uunits = 1 and ∆ = δk. The experiments
consider different values for L and k.

5.3.2 Provisioning Policies
The policies described in this section define how an IGG redirects requests to peering
Grids considering a contract network and how it accepts requests from other Grids.

During a time interval, IGGi stores the requests in the waiting queue. After the in-
terval, IGGi orders the contracts in ascending order of price and for each contract IGGi

evaluates whether there are requests that can be redirected to the peer IGG. Figure 5.2
illustrates the negotiation between IGGi and IGGj under a price range contract. The
scenario is as follows:

1) IGGi sends an offer to IGGj to use its resources under the terms of their contract
when IGGi’s unit cost to service the request is higher than the minimum price of the
contract with IGGj . The price in the offer poffer is the minimum price specified in
the contract between IGGi and IGGj .

2) IGGj , in turn, replies with one of the following messages:

2.1) IGGj sends an accept message whose price is the price in the initial offer if the
request’s cost is lower than or equal to the amount that IGGi is willing to pay
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Consumer:
IGGi

Contractor:
IGGj

sendOffer(rq,poffer)

2.2 [poffer*rqunits < mcj(rq,L) AND
    mcj(rq,L) <= pmax*rqunits]
sendCounterOffer(rq, mc/rqunits)

2.1 [poffer*rqunits >= mcj(rq,L)]
sendAccept(rq,poffer)

2.3 [mcj(rq,L) > pmax*rqunits]
sendReject(rq)

3.2 [pct * rqunits > mci(rq,L)]
rejectUsage(rq)

3.1 [pct * rqunits < mci(rq,L)]
confirmUsage(rq)

Steps 2.x:
1. acceptance
2. counter-offer
3. rejection
Steps 3.x:
1. confirm usage
2. reject usage

[condition]
action

OR

OR

OR

1

2

3

Figure 5.2: Redirection negotiation.

(i.e. poffer multiplied by the number of resource units required by the request
rqunits).

2.2) If IGGj’s request cost is greater than the amount offered by IGGi, but less
than the maximum amount that IGGi would possibly pay (i.e. the contract’s
maximum price pmax multiplied by rqunits), then IGGj sends a counter-offer
whose price is mcj/rqunits. For simplicity the counter-offer contains the peering
IGGj’s unit cost for the request, but the mechanism can easily be extended to
incorporate a profit margin or use profit maximisation techniques.

2.3) If IGGj’s request cost is higher than the maximum amount IGGi is willing to
pay, the offer is rejected.

3) After receiving IGGj’s message, IGGi replies as follows:

3.1) IGGi accepts the counter-offer if its request cost is still higher than the amount
asked by IGGj (i.e. number of resource units required rqunits multiplied by the
counter-offer’s price pct.

3.2) Otherwise, the counter-offer is rejected. IGGi keeps the request in the queue
and repeats the whole process for the next contract.

IGGj stores the offers and evaluates them at time intervals. The evaluation algorithm
sorts the offers by decreasing order of price. In addition, IGGj maintains a list of tickets
created to serve the requests whose negotiations are in progress. In this way, the evaluation
of the request cost considers the requests being served as well as those whose negotiations
are in progress. Creating a ticket corresponds to finding a time slot for the job. Moreover,
in order to reduce the number of messages exchanged by IGGs, when IGGi sends an
offer to IGGj , the offer contains a list of requests that IGGi is willing to redirect to
IGGj . That is, a negotiation is performed for a group of requests and not on a per-request
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basis. IGGj can accept all or part of the requests whose price is within the accepted price
range up to its capacity.

As described beforehand, there are two types of requests, namely best-effort and dead-
line constrained. The IGG uses an earliest start time policy to select the resources to serve
a request. The request’s deadline is the time horizon used to calculate the load in the Grid,
the load imposed by the request and consequently the request cost. In this way, the Grid
load for example, is determined by the resource shares provided by RPs and the alloca-
tions until the horizon. For best-effort requests, the IGG creates a virtual deadline given
by the latest start time based on the time slots held by the IGG plus the runtime estimate;
the virtual deadline is used as the horizon.

5.3.3 Storing Free Time Slots at the Gateway

The resource providers issue free time slots and send them to the IGG periodically. The
IGG maintains a provider’s availability information on availability profiles, which are
modified red-black trees [40]. Each node of the tree has two references, namely to its
predecessor and successor nodes, thus forming an additional linked list. The IGG has a
table of availability profiles wherein one individual profile stores the availability infor-
mation from one resource provider. Appendix A provides details about the design and
implementation of the availability profile.

5.4 Performance Evaluation
The simulated environment is composed of three Grids, namely DAS-2 in the Nether-
lands, and Grid’5000 and AuverGrid in France. The Grids DAS-2 [43], Grid’5000 [21]
and AuverGrid [106] comprise 5, 15 and 5 clusters respectively.1 Figure 5.3 depicts the
environment simulated: layers 1, 2 and 3 represent a pictorial view of the physical location
of provider sites, their Grid organisation and the InterGrid configuration respectively.

The evaluation is performed using a discrete-event simulator (i.e. GridSim). We ex-
tended GridSim to support the scheduling of parallel jobs, gateways and the resource
allocation schemes described in this chapter.2

This section presents two sets of experiments. The first set of experiments investigates
the load management mechanism under a scenario with no resource contention at the
resource providers. That is, the availability information given by providers is precise,
which means that it does not change due to the arrival of jobs dispatched by the providers’
local users. In this sense, this experiment models the availability information obtained
from resource providers using an on-off scheme, wherein on and off intervals correspond
to off-peak and peak periods respectively [11]. This experiment aims to investigate the
efficiency of the proposed load management mechanism. In the second set of experiments
(Section 5.4.2), the availability information is obtained from providers by using a sub-set
of the provisioning strategies discussed in Chapter 4.

1For detailed information on the characteristics of the clusters we refer to Iosup et al. [101] and the Grid
Workloads Archive website at http://gwa.ewi.tudelft.nl/pmwiki/

2More information about the changes in the simulator is available at
http://www.gridbus.org/intergrid/gridsim.html
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Figure 5.3: Grid environment simulated.

5.4.1 Providers Using an On-Off Scheme

The parameters used by the experiments are summarised in Table 5.1. The resource
providers use a pricing function for a resource unit given by Equation 5.4:

price = cost+ (cost ∗ load) (5.4)

where cost is drawn from a uniform distribution; load is generated using an on-off model
as described by AuYoung et al. [11]. The duration of the on and off intervals and the load
in each interval are also modelled using uniform distributions as described in Table 5.1.
The on-off model is used to model the availability of part of the providers, around 50 per
cent. This means that all the remaining resource providers have their resources dedicated
to the Grids. Table 5.1 also shows the number of CPUs dedicated in each Grid.

To model the workloads of the Grids we use job traces of real Grids obtained from the
Grid Workloads Archive.3 We divided the traces into four-month intervals. The experi-
ments use the interval between the 9th-12th months of DAS-2’ trace, the 5th-8th months of
AuverGrid’s and the 17th-20th months of Grid’5000’s. We make an effort to eliminate the
systems’ warm-up and cool-down phases by disregarding the first week of the experiment
results and deeming the last simulated event as the arrival of the last job submitted in
any of the Grid workloads, respectively. As described beforehand, there are two types of
requests, namely deadline constrained and best-effort. We randomly selected the requests
that are deadline constrained. To generate the request deadlines we use a technique de-
scribed by Islam et al. [103], which provides a feasible schedule for the jobs. We perform
the experiments using the same Grid environment with no contracts among the gateways,
using an aggressive backfilling policy at the resource providers and a ‘submit to the least

3Grid Workloads Archive website: http://gwa.ewi.tudelft.nl/pmwiki/
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Table 5.1: Parameters used by the first set of experiments.
Parameter Value

Number of Grids 3
Contract topology all-to-all (Figure 5.3)
Load at off-peak (ON) intervals (%) 50 – 100
Load at peak (OFF) intervals (%) 20 – 50
ON interval duration (hours) 24 – 72
OFF interval duration (hours) 12 – 48
Cost of a resource unit 0.90 – 1.00
Number of dedicated CPUs (DAS-2) 192
Number of dedicated CPUs (AuverGrid) 234
Number of dedicated CPUs (Grid’5000) 648
Deadline constrained requests (%) 30
Stringency factor 5.00

loaded resource’ policy at the gateway. A request’s deadline is the completion of the
corresponding job under this scenario multiplied by a stringency factor (Table 5.1).

We calculate the price of a resource unit in the contracts between the Grids by assign-
ing different values to L in Equation 5.3. The experiments evaluate cases with L equal
to 0.99 and 0.95 and different values for k: 0.01, 0.05, 0.1 and 0.2. For example, when
L=0.99 and k=0.01, the fixed price (pricemax) of a contract is the cost of a request re-
quiring one resource unit of the Grid’s capacity when the Grid is 99% utilised. The price
range contract has a maximum price of pricemax and a minimum price given by pricemax
minus the difference between the request cost at 99% and at 98% of utilisation.

Performance Metrics

We select two metrics, namely increase in requests accepted and the percentage of the
generated load redirected by the IGGs. The redirected load shows the performance of the
mechanism in terms of managing peak loads The increase in requests accepted, on the
other hand, demonstrates whether the IGG compromises local users by peering with other
IGGs. The experiments also compute the increase in utilisation for comparison against
the migration of load.

Experimental Results

All the results presented in this section are averages of 10 simulation rounds using dif-
ferent simulation seeds and excluding the best and worst results. The global increase in
the number of requests served under different types of contracts is shown in Table 5.2.
Overall, there is an increase in the number of requests accepted, except for DAS-2, whose
acceptance rate is decreased. Further investigation revealed that DAS-2 has a lower utili-
sation than the other two Grids. When we calculate the deadlines using the ‘submit to the
least loaded resource’ and aggressive backfilling policies, the deadlines become very tight
as many jobs are started immediately while others backfill easily, thus generating very
tight deadlines. As IGGs run the provisioning algorithm at time intervals, some requests
are rejected. When the deadlines are not used, all the requests are processed. As the price
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range increases, more load can be migrated. However, in the experiments, as k becomes
large (i.e. k > 0.2), the mechanism becomes unstable as Grids tend to both redirect and
accept too many requests.

Table 5.2: Increase in both requests accepted and resource utilisation.
L = 0.99

Fixed
Price

k

Metric Grid 0.01 0.05 0.1 0.2

Increase in
number of
requests served

DAS-2 -6.50 -4.50 -3.38 -5.25 -10.00
AuverGrid 658.00 661.12 661.12 657.00 663.00
Grid´5000 19.12 8.88 10.62 4.88 6.38

Increase in
resource
utilisation (%)

DAS-2 7.62 7.99 9.42 12.56 8.39
AuverGrid -23.30 -24.15 -26.45 -27.56 -29.15
Grid´5000 6.12 6.38 6.92 6.35 7.98

L = 0.95

Fixed
Price

k

Metric Grid 0.01 0.05 0.1 0.2

Increase in
number of
requests served

DAS-2 -5.38 -4.25 -8.00 -4.25 -4.88
AuverGrid 650.38 659.50 658.12 661.00 662.00
Grid´5000 18.25 7.00 13.12 10.50 14.88

Increase in
resource
utilisation (%)

DAS-2 7.72 8.93 8.18 8.69 9.24
AuverGrid -22.20 -23.45 -25.42 -27.52 -30.96
Grid´5000 5.71 5.51 6.78 7.25 8.13

The table also shows the increase in resource utilisation at each Grid. Also, Grid’5000
redirects smaller amounts of load (Figure 5.4). Even though Grid’5000 does not have a
substantial increase in the acceptance rate of the requests originated by its users, it in-
creases its resource utilisation without compromising the acceptance rate. This could
lead to an increase in profit as they can receive a payment from the other Grids for the
resources provided. However, the experiments do not measure the profits of each Grid.
Overall, the algorithms achieve their goal, which is to redirect requests driven by the re-
quests’ marginal cost of allocation. AuverGrid has a decrease in utilisation in contrast to
DAS-2 and Grid’5000. As AuverGrid has a higher utilisation than DAS-2 and Grid’5000
when they are not redirecting requests, this decrease in utilisation shows that the mech-
anism is effective in redirecting AuverGrid’s requests to other Grids. Figure 5.5 shows
that there is an initial load imbalance between the Grids, as the utilisation of AuverGrid
without contracts is close to 70%, while DAS-2 and Grid’5000 are both close to 10%.
The table shows that the mechanism helps to balance the load across the Grids.

Figure 5.4 presents the percentage of the load generated by each Grid redirected to
other Grids. When Grids define the maximum price for a resource unit as the unit cost at
99% of utilisation (i.e. L = 0.99), they exchange load and the overall number of requests
accepted is improved in almost all the cases (Table 5.2). The acceptance is better when
contracts define a price range, which allows Grids to redirect more load.
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When IGGs set the maximum price as the unit cost at a low value for L and the price
range is large, the number of requests accepted increases whereas the amount of load
exchanged decreases. That occurs because overloaded IGGs tend to be more conservative
in accepting load from other IGGs, even though they try to migrate load more easily. An
IGGi that needs to offload will redirect requests willing to pay a price lower or equal to
the maximum price of a contract. If the unit cost of the IGG considering accepting the
load is slightly above the maximum price, it will not accept the load. In our experiments,
the increase of accepted requests reflects this behaviour.

The experiments show that load management across Grids through resource exchange
incorporating economic compensation for resource providers is possible. The resource
utilisation and increase in accepted requests show that Grids balance their load and redi-
rect requests, which could help minimise the costs with resource usage.

5.4.2 Providers Using Provisioning Policies
These experiments also model the workloads of the Grids using traces obtained from the
Grid Workloads Archive. However, here we divide the traces into 2-month intervals. Each
simulation randomly selects one interval from the trace of each Grid to model the load of
that Grid. Attempting to eliminate the system warm-up, we disregard the first two weeks
of results; for the load forecast policy, the second week is used for training.

The resource providers’ local jobs are generated according to the Lublin99 model
[118]; similarly to Section 4.4. In these experiments, however, we generate 2-month long
workloads. We also change two parameters of the Lublin99 model when generating the
workload for each cluster. The medium size of a parallel job (specified in log2) is set to
log2m− θ where m is the number of CPUs in the system and θ is drawn uniformly from
1.5 to 3.5. In addition, the inter-arrival rate of jobs is modified by setting the β of the
used gamma distribution to a value uniformly distributed between 0.4871 and 0.55. These
changes lead to workloads with different loads and different job arrival rates, which is
representative of Grid resources.

Performance Metrics

The performance evaluation considers two metrics: the Average Weighted Response Time
(AWRT) [90] of jobs and the percentage of the generated load redirected by the IGGs.
The AWRT measures how long on average users wait to have their jobs executed; a short
AWRT indicates that users do not wait long for their jobs to complete on average. The
redirected load demonstrates the performance of the mechanism in terms of managing
peak loads; the AWRT, on the other hand, demonstrates whether the response time of user
requests is improved through peering of IGGs.

AWRTk =

∑
j∈τk

pj ·mj · (ctj − stj)∑
j∈τk

pj ·mj

(5.5)

The AWRT is given by Equation 5.5, where mj is the number of processors required
by job j, pj is the execution time of the job, ctj is the completion time of the job and stj
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is the job’s submission time. The resource consumption (pj ·mj) of each job j is used as
the weight.

Policy Acronyms

Similar to Chapter 4, the name of the policies are abbreviated. A policy name comprises
two parts separated by +. The first part represents the policy employed by the provider
whereas the second represents the IGG policy. In the resource provider’s side, Eb stands
for aggressive backfilling, Cb for Conservative backfilling, M for Multiple partitions and
Mf for Multiple partitions with load forecast. On the other side, for the IGG’s policy,
least-load means ‘submit to the least loaded resource’, earliest represents ‘select the
earliest start time’ based on the free time slots given by providers on a periodical basis.
In this way, EbMf+earliest-partial for example, indicates that providers use aggressive
backfilling, multiple partitions and load forecasts, whereas the IGG submits jobs selecting
the earliest start time based on the availability information sent by providers at regular
intervals.

Experimental Results

The parameters used for the experiments are summarised in Table 5.3. The fixed cost of
a resource in Equation 5.4 is drawn uniformly from 0.9 to 1. The load threshold (L) and
k are set to 95% and 5% respectively. The IGGs inform one another about their fixed
prices or price ranges in their contracts based on the current resource demand at intervals
between 1 and 6 hours. The results are averages of 10 simulation rounds excluding the
best and worst results. The simulation seed to generate the providers’ local workloads,
the prices and the contract update intervals is changed at each round.

Table 5.3: Parameters used in the second set of experiments.
Parameter Description

Number of Grids 3
Contract topology all-to-all (see Figure 5.3)
Number of simulation rounds 10
Cost of a resource unit 0.90-1.00
Load threshold (%) 95
Value of k (%) 5
Time between contract updates (hours) 1-6
Number of clusters at DAS-2 5
Number of CPUs at DAS-2 400
Number of clusters at AuverGrid 5
Number of CPUs at AuverGrid 475
Number of clusters at Grid’5000 15
Number of CPUs at Grid’5000 1368

First Experiment: The first experiment evaluates the AWRT of both Grid and local
jobs in a scenario where the providers send the availability information to the IGG every
12 hours. Figure 5.6 shows the AWRT of Grid applications for four sets of allocation poli-
cies (i.e. Eb+least-load and EbMf+, Cb+ and CbM+earliest-start). The initial four bars
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represent the AWRT under no peering between IGGs, that is, the IGGs have no contracts
with one another and therefore do not redirect requests. Bars 5 to 7 represent the AWRT
of Grid jobs when fixed-price contracts are established amongst IGGs, whereas bars 8 to
10 show the AWRT under price range contracts. The aggressive backfilling with ‘submit
to the least loaded resource’ (i.e. bar 1) is shown for the sake of comparison. We observe
that overall, the AWRTs of local and Grid jobs are reduced by the peering of Grids un-
der both fixed-price and price-range contracts. That occurs despite IGGs accumulating a
number of requests to be handled at random intervals between 1 and 5 minutes when con-
tracts exist, in contrast to Eb+least-load in which requests are handled upon their arrival
at the IGG. The load forecast based policy (EbMf+earliest-start) leads to a decrease in the
AWRT of Grid jobs in both fixed-price and price-range contracts, but it does not perform
as good as the conservative backfilling based policies. However, initially we expected that
this policy would have less impact on the providers’ local jobs because they resize the free
time slots given to the IGG based on load forecasts. In addition, previous results showed
that the load forecast policy is influenced by the length of the horizon (Chapter 4).

The AWRT of local jobs show the impact of peering of Grids in the providers’ user
applications (Figure 5.7). Similarly to the Grid applications, the AWRT of local jobs
is reduced with the peering of IGGs. The reduction is more accentuated for the load
forecast based policy, confirming our expectations that by providing load forecasts, even
if not very precise, the gateway can schedule jobs accounting for the providers’ local load.
Intriguingly, the AWRT of both Grid and local jobs under price range contracts is similar
to, and in same cases worse than, that of fixed-price contracts. We initially expected that;
although Grids can redirect more requests under price-range contracts, IGGs handling the
requests and offers at random intervals between one and five minutes might account for the
increase in AWRT. However, as described later, with the chosen price range contract, some
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IGGs in fact redirect fewer requests. Therefore, we conclude that the increase in AWRT
is caused by a Grid handling requests locally after a period of unsuccessful negotiations.
This scenario may be improved by introducing a buy-it-now mechanism where a Grid
could make an offer for immediate access to resources [10], however, investigation of
such a mechanism is outside the scope of this thesis.

Figure 5.8 presents the percentage of the load from each Grid migrated to other Grids
when providers send availability information every 12 hours. The first set of experiments
revealed that the job acceptance is higher when the contracts define a price range, which
allows Grids to redirect more load. However, with a price range defined by k = 5%,
Grids do not redirect more load in all the cases. For example, Figure 5.8 shows that when
providers use conservative backfilling without multiple partitions, DAS-2 and AuverGrid
in fact redirect less load.

Second Experiment: the second experiment evaluates the AWRT of Grid jobs in
three situations where the providers send the availability information to the gateway every
24 hours, 12 hours and 6 hours respectively. Table 5.4 shows the AWRT of Grid jobs
per Grid under each scenario. As noted earlier, AuverGrid has a higher load than DAS-
2 and Grid’5000. Table 5.4 shows that Grids with a low utilisation (i.e. DAS-2 and
Grid’5000) do not have a decrease in the AWRT of their Grid users’ applications. In fact,
the AWRT is worsened. In contrast, AuverGrid has a substantial reduction in the AWRT
of its Grid jobs. The conclusion, therefore, is that for improving the AWRT at least, the
peering of Grids with very different utilisation levels benefits highly-utilised Grids and the
mechanism achieves its goal of redirecting requests to those with lower utilisation levels,
as shown in Figure 5.8.

The second experiment also evaluates the AWRT of providers’ local jobs for different
Grids under different horizons. The results are presented in Table 5.5 and follow those
of the AWRT of Grid jobs: AuverGrid benefits from the peering, with the AWRT of
its providers’ local jobs decreasing, Grid’5000 has small AWRT benefits for fixed-price
contracts when providers utilise a conservative backfilling policy with multiple partitions,
however DAS-2 has the AWRT of its providers’ job worsened by the peering.

Third Experiment: the third experiment investigates the peering between DAS-2 and
Grid’5000. Having the same characteristics as the second, this experiment investigates the
AWRT of Grid jobs when the peering Grids are both less utilised. Table 5.6 shows the
results: the AWRT of Grid’5000’s jobs improves when the horizon is of 6 hours, and
DAS-2 experiences small AWRT increases under the same horizon and policies. For the
other horizons (i.e. 12 hours and 24 hours), however the results are mixed. Some small
improvements are offset by some increases when IGGs store messages to be handled at
time intervals when they have contracts with other IGGs. Hence, some requests have an
additional delay incurred by the negotiation.

Overall, however, the experiments show that load management across Grids through
resource exchange that considers the compensation of resource providers is possible with
selected provisioning schemes. The load migrated shows that Grids balance their load and
redirect requests. The allocation policies allow gateways to make decisions on resources
provided to peering Grids. In addition, the overall AWRT of both Grid jobs and providers’
local jobs is improved, however, some Grids have increases in the AWRT incurred by the
negotiation time, which could be minimised through future research.
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5.5 Conclusion
This chapter presented the performance evaluation of schemes for resource provisioning
across Grids. It demonstrated how a Grid can redirect requests to other Grids during
periods of peak demand using a cost-aware load sharing mechanism. The mechanism
relies on availability information obtained via different scheduling policies at provider
sites, which were studied in Chapter 4. The provider policies enable information about
fragments in the scheduling queue of clusters (i.e. the free time slots) to be obtained using
ordinary resource management systems. The load sharing mechanism utilised these free
time slots as the basis for load sharing among Grids.

We presented simulation results that demonstrate that the mechanism and policies
are effective for redirecting requests across Grids leading to a reduction in the overall
Average Weighted Response Time (AWRT) of Grid applications. Moreover, we showed
that, overall, the proposed policy of a network of contracts amongst interconnected Grids
improves the AWRT of providers’ local jobs in comparison to traditional policies when the
Grids are interconnected. However, some Grids have increases in the AWRT incurred by
the negotiation time. The experiments demonstrated that, despite the imprecise resource
availability information supplied by providers, the load management across Grids through
resource sharing is possible while accounting for the compensation of resource providers.



Chapter 6

Mixing Commercial and
Non-Commercial Providers

The maturity of virtual machine and network technologies has led to the emergence of
commercial providers, who offer virtually unlimited numbers of resources to users, charg-
ing for the usage. This model is generally termed as “Cloud Computing” as the resources
are on a “Cloud” whose physical infrastructure is unknown to the users. The emergence
of these commercial infrastructure providers, their economies of scale, and the increasing
costs of operating Grids may lead to future Grids comprising both commercial and non-
commercial infrastructures. In this scenario, resource management systems should make
provisioning and scheduling decisions taking into account the cost of using commercial
infrastructure. This chapter investigates the benefits that organisations can reap by using
commercial providers to augment the computing capacity of their local infrastructure. We
evaluate the cost of six scheduling strategies used by an organisation that operates a clus-
ter managed by virtual machine technology and seeks to utilise resources from a remote
commercial provider to reduce the response time of its user requests. Requests for vir-
tual machines are submitted to the organisation’s cluster, but additional virtual machines
are instantiated in the remote provider and added to the local cluster when there are in-
sufficient resources to serve the users’ requests. Naı̈ve scheduling strategies can have a
great impact on the amount paid by the organisation for using remote resources, poten-
tially increasing the overall cost with the use of commercial infrastructure. Therefore, this
chapter investigates scheduling strategies that consider the use of resources from commer-
cial providers, to understand how these strategies achieve a balance between performance
and usage cost, and how much they improve the requests’ response times.

6.1 Introduction
Managing and providing computational resources to user applications is one of the main
challenges for the high performance computing community. As discussed in previous
chapters, to manage resources existing Grid solutions rely on a job abstraction for re-
source control, where users submit their applications as batch jobs to a resource manage-
ment system responsible for job scheduling and resource allocation. This usage model
has served the requirements of a large number of users and the execution of numerous
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scientific applications. However, this usage model demands the user to know very well
the environment on which the application will execute. In addition, users can sometimes
require administrative privileges over the resources to customise the execution environ-
ment by updating libraries and software required, which is not always possible using the
job model.

As discussed in Chapter 2, the maturity and increasing availability of virtual machine
technologies has enabled another form of resource control based on the abstraction of con-
tainers. A virtual machine can be leased and used as a container for application deploy-
ment [146]. Under this scenario, a user can lease a number of virtual machines with the
operating system of choice. These virtual machines can be further customised to provide
the software stack required to execute the user applications. This form of resource control
has enabled a number of usage models, including that of batch job scheduling [171].

The creation of customised virtual machine environments atop a physical infrastruc-
ture has also enabled another model recently known as “Cloud Computing” [9, 193].
Based on the economies of scale and recent Web and network technologies, commercial
resource providers, such as Amazon Inc., aim to offer resources to users in a pay-as-
you-go manner. These commercial providers, also known as Cloud providers and In-
frastructure as a Service (IaaS) providers, allow users to set up and customise execution
environments according to their application needs.

This chapter investigates whether an organisation operating its local cluster can benefit
from using Cloud providers to improve the performance of its users’ requests. We propose
and evaluate six scheduling strategies suitable for a local cluster that is managed by virtual
machine technology to improve its Service Level Agreements (SLAs) with users. These
strategies aim to utilise remote resources from the Cloud to augment the capacity of the
local cluster. However, as the use of Cloud resources incurs a cost, the problem is to
find the price at which this performance improvement is achieved. This chapter aims to
explore the trade-off between performance improvement and cost.

Specifically, the research described in this chapter attempts to:

• Describe how the proposed system can enable an organisation to extend its comput-
ing infrastructure by allocating resources from a Cloud provider.

• Provide various scheduling strategies that aim to improve the performance of appli-
cations using resources from Cloud providers.

• Evaluate the proposed strategies, considering different performance metrics; namely
average weighted response time, job slowdown, number of deadline violations,
number of jobs rejected, and the money spent for using Cloud resources.

6.2 Infrastructure as a Service and Lease Abstractions
Virtualisation technologies have enabled the realisation of new models such as Cloud
Computing [9, 193] and IaaS. The main idea is to supply users with on-demand access to
computing or storage resources and charge fees for their usage. In this model, users pay
only for the resources they utilise. A key provider of this type of on-demand infrastructure
is Amazon with its Elastic Compute Cloud (EC2) [4].
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To use Amazon’s infrastructure, users deploy instances of pre-submitted virtual ma-
chine images. They can also upload their own virtual machine images to EC2. The EC2
service utilises the Amazon Simple Storage Service (S3), which aims to provide users
with a globally accessible storage system. Another example of commercial Cloud com-
puting solution is provided by 3Tera1.

Lease abstractions relying on virtual machine technology have been proposed [102,
108, 171]. Sotomayor et al. [171] explored a lease abstraction to handle the schedul-
ing of a combination of best-effort jobs and advance reservations. Keahey et al. [108]
demonstrated how to create customised execution environments for a Grid community
via Globus Virtual Workspaces. As noted in Chapter 2, Shirako’s brokers enable the leas-
ing of various types of resources including virtual machines [102]. Previous work has also
shown how to enable virtual clusters that span multiple physical clusters [63, 157, 164].
Emeneker et al. [63] evaluated the overhead of creating virtual clusters using Xen [15]
and the Moab scheduler.

The applicability of Amazon services for Grid computing has been demonstrated in
existing work. Palankar et al. [138] evaluated the use of Amazon S3 for Science Grids
with data-intensive applications and concluded that Amazon S3 can be used for some of
the operations required by data-intensive Grid applications. Although Grid applications
can benefit from using Amazon services, such as improved data availability, Palankar
et al. highlighted that a balance between the benefits of Amazon services and the cost
of using Amazon’s infrastructure should be taken into account. This balance involves
performing expensive operations that generate large amounts of temporary data locally at
the Grid infrastructure. Deelman et al. [48] evaluated the cost of using Amazon EC2 and
S3 services to serve the resource requirements of a scientific application.

This thesis research improves previous work by proposing scheduling strategies that
aim at improving the response time of applications running on a cluster by extending this
cluster’s capacity with resources acquired from Amazon EC2. This thesis evaluates the
ratios of performance improvements to the money spent for using resources from Amazon
EC2. This model can further extend the provisioning techniques proposed in Chapter 4.

6.3 Resource Provisioning Scenario
This thesis considers the case where an organisation manages a cluster of computers
through virtual machine technology to supply its users with the resources required by their
applications. The scenario is depicted in Figure 6.1, which can also represent a centre that
provides computing resources to scientific applications or a commercial organisation that
provisions resources to its business applications. The organisation wants to provision
resources for its user applications in a way that guarantees acceptable response time.

The resources of the local cluster are managed by a Virtual Infrastructure Manager
(VIM) such as Open Nebula [76] and Eucalyptus [133]. The VIM can start, pause, resume,
and stop virtual machines on the physical resources offered by the cluster. The scheduling
decisions at the cluster are performed by the Scheduler, which leases the site’s virtual
machines to the users. The scheduler also manages the deployment of virtual machines
on a Cloud Provider according to provisioning strategies, which are detailed in the next

1http://www.3tera.com/
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Figure 6.1: The resource provisioning scenario.

section. In order to deploy virtual machines on the Cloud provider, the scheduler uses the
APIs offered by the provider, which are represented by the Infrastructure Manager.

6.3.1 Scheduling and Redirection Strategies
The strategies proposed and evaluated in this chapter define how the scheduler performs
the scheduling of leases and when it borrows resources from the Cloud. The scheduler is
divided into two sub-scheduler modules, one managing the scheduling of requests at the
local cluster, hereafter termed the Site Scheduler, and another managing the scheduling on
the Cloud resources, termed as the Cloud scheduler. In the system implementation, these
sub-schedulers are actually two interconnected InterGrid Gateways (IGGs) that commu-
nicate their allocation decisions with one another.

We term a strategy or algorithm used by a sub-scheduler module to schedule the leases
as a scheduling strategy. The algorithm that defines when the sub-scheduler managing the
cluster borrows resources from the Cloud and which requests are redirected to the Cloud
resources is called a redirection strategy. A combination of scheduling and redirection
strategies is a strategy set. As discussed later in Section 6.4, a redirection strategy can be
invoked at different times (e.g. a job arrival or completion) in different strategy sets.

6.3.2 Types of User Requests
The users of the infrastructure run different applications with different computing require-
ments. Some applications need resources at particular times to meet application deadlines,
whereas other applications are not strict about the time when they are given resources to
execute as long as they are granted the resources required. The first category of applica-
tions is termed as deadline-constrained and the second category is termed as best-effort.

For the purpose of this research, user requests are to be serviced by virtual machines
hosted by an individual computing site; thus the same user request cannot receive re-
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sources from both the Cloud provider and the organisation’s cluster. Applications that
rely heavily on message passing interfaces are generally sensitive to network delays and,
despite advances in virtualisation technology [181], they may not benefit heavily from
using resources from multiple computing sites. In practice, the execution of these appli-
cations is generally confined to an individual computer cluster.

6.4 Evaluated Strategy Sets

As described earlier, a strategy set consists of strategies for scheduling requests at the site
and the Cloud, and a redirection strategy that specifies which requests are redirected to
the Cloud. As scheduling strategies, we use conservative [128], aggressive [116], and
selective backfilling [172]. This section summarises the request backfilling techniques,
whereas Chapter 2 provides a more detailed discussion. With conservative backfilling,
each request is scheduled (i.e. it is granted a reservation) when it arrives in the system,
and requests are allowed to jump ahead in the queue if they do not delay the execution
of other requests. In aggressive backfilling, only the request at the head of the waiting
queue – called the pivot – is granted a reservation. Other requests are allowed to move
ahead in the queue only if they do not delay the pivot. Selective backfilling grants reser-
vations to requests that have waited long enough in the queue. Under selective backfilling
a request is granted a reservation if its expected slowdown exceeds a threshold. The ex-
pected slowdown of a request r is also called eXpansion Factor (XFactor) and is given by
Equation 6.1.

XFactor = (wait time+ run time)/run time (6.1)

In fact, this thesis employs the Selective-Differential-Adaptive scheme proposed by
Srinivasan et al. [172], which lets the XFactor threshold be the average slowdown of
previously completed requests.

6.4.1 Deadline Unaware Scheduling Strategies

The following strategy sets are considered for scheduling requests that arrive at the cluster:

Naı̈ve: both Site and Cloud schedulers use conservative backfilling to schedule the re-
quests. If the site scheduler cannot start a request immediately, the redirection algorithm
checks whether the request can be started immediately using Cloud resources. If the re-
quest can start on the Cloud resources, then it is redirected to the Cloud, otherwise it is
placed in the site’s waiting queue.

Shortest Queue: requests at the site’s cluster are scheduled in the First-Come-First-
Served manner with aggressive backfilling [116]. The redirection algorithm executes as
each request arrives or completes, and computes the ratio of virtual machines required by
requests currently waiting in the queue to the number of processors available, similar to
the work of England and Weissman [66]. If the Cloud’s ratio is smaller than the cluster’s,
the redirection algorithm iterates the list of waiting requests and redirects requests until
both ratios are similar.
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Weighted Queue: this strategy is an extension of the Shortest Queue strategy. As each
request arrives or completes, the scheduler computes the number of virtual machines re-
quired by waiting requests on the cluster, and the strategy computes how many virtual
machines are in execution on the Cloud. The site scheduler then computes the number of
virtual machines that can be started on the Cloud, num vms, as the minimum between
the number of virtual machines demanded by the site’s requests and the Cloud’s virtual
machine limit, and redirects requests to the Cloud until num vms is reached.

Selective: the local site uses the selective backfilling scheme described earlier. As each
request arrives or completes, the scheduler checks which requests can be started, then
initiates them. It then checks the sizes of the queues, using the same approach based on
queue ratios used in the Shortest Queue strategy. If the queues have different ratios, the
algorithm iterates the list of waiting requests and checks their XFactors. For each waiting
request, if the expansion factor exceeds the threshold, the algorithm checks the potential
start time for the request at both the Cloud and the site. The algorithm finally makes a
reservation at the site that provides the earliest start time.

6.4.2 Deadline Aware Scheduling Strategies

This thesis also investigates strategies to schedule deadline constrained requests using
resources from the site and the Cloud provider. The additional deadline aware strategies
are:

Conservative: both local site and Cloud schedule requests using conservative backfilling.
As each request arrives, the scheduler checks if the site can meet the request’s deadline. If
the deadline cannot be met, the scheduler checks the availability at the Cloud. If the Cloud
can meet the request’s deadline, then the request is scheduled on the Cloud resources. If
the request deadline cannot be met, the scheduler schedules the request at the local site if
it provides a better start time than the Cloud. Otherwise, the request is redirected to the
Cloud.

Aggressive: both local cluster and the Cloud use aggressive backfilling to schedule re-
quests. Similarly to the work of Singh et al. [167], as a request arrives the scheduler
builds a tentative schedule. Using aggressive backfilling, it sorts the requests using an
Earliest Deadline First (EDF) scheme and checks whether the acceptance of the request
would break any deadline. If there are no potential deadline violations, the request is
scheduled locally; otherwise, a schedule is built for the Cloud resources. If the request
does not break deadlines of requests scheduled to use the Cloud, the request is served with
resources from the Cloud provider. If the request deadline cannot be met, the scheduler
schedules the request using the local cluster’s resources if they provide a better start time
than the Cloud. Otherwise the request is served by resources from the Cloud.

6.5 Performance Evaluation

This section describes the scenario considered for performance evaluation, the perfor-
mance metrics, and experimental results.
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6.5.1 Experimental Scenario

The evaluation of the strategies is performed using GridSim [31]. We use simulation be-
cause it enables us to perform repeatable experiments and the cost incurred by performing
experiments on real infrastructure would be prohibitively expensive. To store the infor-
mation about resources available for running virtual machines, the scheduler uses the data
structure described in Appendix A.

The experiments model the San Diego Super Computer (SDSC) Blue Horizon ma-
chine because job traces collected from this supercomputer are publicly available2 and
have been studied previously [118]. The Blue Horizon machine comprises 144 nodes.
The limit of virtual machines that the site can host is the same as the number of nodes. In
addition, in this work the maximum number of virtual machines that can be in execution
by a Cloud provider at a particular time is the same as the maximum in the local cluster.

To compute the cost of using resources from the Cloud provider, we use the amounts
charged by Amazon to run basic virtual machines at EC2 (i.e. as of writing of this thesis
the rate was US$0.10 per virtual machine/hour). The experiments in this chapter con-
sider only the amount charged to run virtual machines, but in practice Amazon charges
for the usage of other resources, such as network and storage. Other usage fees are not
considered in this thesis because they depend on the applications’ communication and
data requirements. In addition, as Amazon commences charging users when the virtual
machine process starts, the experiments consider that the booting time is already included
into the request’s duration.

6.5.2 Performance Metrics

Some metrics related to requests’ response times include the bounded request slowdown
(bound=10 seconds), hereafter referred only as request slowdown [74], and the Average
Weighted Response Time (AWRT) [90]; described in Chapter 5. The AWRT measures
how long on average users wait to have their requests completed. A short AWRT indicates
that on average users do not wait long for their requests to complete.

AWRT =

∑
j∈τk

pj ·mj · (ctj − stj)∑
j∈τk

pj ·mj

(6.2)

The AWRT is given by Equation 6.2, where mj is the number of virtual machines
required by request j, pj is the execution time of the request, ctj is the time of completion
of the request and stj is its submission time. The resource consumption (pj ·mj) of each
request j is used as the weight.

In order to compute the benefits of using one strategy over another, we also compute
the cost ratio between AWRT and the amount spent in running virtual machines on the
Cloud. In addition, we measure the number of deadline violations and request rejections
in scenarios where some requests are deadline constrained. More information about the
ratios is provided along with respective experiments.

2http://www.cs.huji.ac.il/labs/parallel/workload/
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6.5.3 Experimental Results

The first experiment evaluates the performance improvement of different strategy sets
by running virtual machines on the Cloud provider and the cost of such improvement
in each case. This experiment uses a metric hereafter termed as performance cost. The
performance cost of a strategy st is given by Equation 6.3.

perf. costst =
Amount spent

AWRTbase − AWRTst
∗ AWRTst (6.3)

where Amount spent is the amount of money spent running virtual machines on the
Cloud provider, AWRTbase is the AWRT achieved by a base strategy that schedules re-
quests using only the site’s resources and AWRTst is the AWRT under the strategy st
when Cloud resources are also utilised. This metric aims to quantify the improvement
achieved in AWRT and its cost. The smaller the performance improvement cost, the bet-
ter the strategy performs. In the experiments described in this section, the base strategy is
FCFS with aggressive backfilling.

For this experiment, the site’s workloads have been generated using Lublin and Feitel-
son [118]’s model (i.e. Lublin99). Lublin99 has been configured to generate two-month-
long workloads of type-less requests (i.e. no distinction is made between batch and inter-
active requests). The maximum number of CPUs used by the generated requests is set to
the number of nodes in the cluster. This experiment evaluates the performance cost under
different types of workloads. In order to generate different workloads, we modify three
parameters of Lublin99’s model, one at a time. First, we change the mean number of
virtual machines required by a request (specified in log2), which is set to log2m − umed
where m is the maximum number of virtual machines allowed in the system. We vary
umed from 1.5 to 3.5. The larger the value of umed, the smaller the requests become in
terms of numbers of virtual machines required and consequently result in lighter loads.
The second parameter changed in the experiments affects the inter-arrival time of requests
at rush hours. The inter-arrival rate of jobs is modified by setting the β of the gamma dis-
tribution (hereafter termed barr), which we vary from 0.45 to 0.55. As the values for
barr increase, the inter-arrival time of requests also increases. The last parameter impacts
the request duration by changing the proportion of the first gamma in the hyper-gamma
distribution used to compute the requests’ runtimes. The proportion p of the first gamma
in Lublin99’s model is given by p = pa ∗ nodes+ pb. We vary the parameter pb from 0.5
to 1.0. The larger the value of pb, the smaller the duration of the requests.

The results of this experiment are shown in Figure 6.2. Each data point is the average
of 5 simulation rounds. Graphs (a), (b) and (c) show the site’s utilisation under aggressive
backfilling scheduling when the Cloud resources are not used. These illustrate the effect
of the parameter changes on the load. Graphs (d), (e) and (f) show the performance cost
when we vary: the number of virtual machines required by a request, the inter-arrival
interval and the request’s duration, respectively. The higher values obtained by the naı̈ve
strategy show that more money is spent to achieve an improvement in AWRT, especially
under heavy loads, as shown in graph (d). From graphs (a) and (d), we also observe that
the performance cost of using the Cloud is linear with the decrease in number of virtual
machines of requests except the for naı̈ve, which is very expensive for small requests.
Under lighter loads, all strategies tend to yield the same ratio of cost and performance.
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Figure 6.2: The top three graphs show the site’s utilisation using the base aggressive back-
filling strategy without Cloud resources; the bottom three graphs show the performance
cost under different workloads. Higher values of umed result in requests requiring larger
numbers of virtual machines. The larger the value of barr, the greater the inter-arrival
time of requests at rush hours. The time duration of the requests decrease as the value
of pb increases. Each data point presented in the graphs is the average of 5 simulation
rounds.

With small inter-arrival periods, all strategies have similar peformance, except the naı̈ve
strategy. The naı̈ve strategy again produces a high performance cost, as shown in graph
(e). With the variation of request arrival time, the experiments show a limit on the perfor-
mance cost, which is close to 5,500. The cost increases until this limit and then decreases,
due to the increase of the request inter-arrival time. More time between requests allows
using fewer resources, which makes it more costly to rely on the Cloud to improve the re-
quest response time. For smaller inter-arrival time values, there is an important difference
in cost of performance for the Naı̈ve strategy in comparison to other strategies. In the last
part of the experiment, graphs (c) and (f), all strategies return similar performance cost
for the same request duration variation. The performance cost is inversely proportional to
the cluster usage.

The second experiment evaluates the site using resources from the Cloud to meet
service level agreements with consumers. In this experiment the requests have deadlines.
We measure the cost of reducing deadline violations, or requests completing after their
deadlines. The cost of reducing deadlines using a strategy st is given by Equation 6.4.

non− violation costst = Amount spentst/(violbase − violst) (6.4)

where Amount spentst is the amount spent with Cloud resources, violbase is the number
of violations using a base strategy and violst is the number of violations under the evalu-
ated strategy. The base policy is aggressive backfilling sorting the jobs for scheduling and
backfilling in an EDF manner.

This experiment uses real job traces collected from the SDSC Blue Horizon machine
to model the workload of the site’s cluster. As the job trace spans a period of two years,
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we divide it into intervals of two months each. For each experiment, we performed 5
simulation rounds using a different workload for each round. As the deadline information
is not available in the trace, we use a Bernoulli distribution to select from the trace the
requests that should have a deadline. In this way, a request read from the job trace file has
a probability of being deadline constrained. The experiments consider different numbers
of deadline constrained requests.

To generate the request deadlines we use a technique described by Islam et al. [103],
which provides a feasible schedule for the requests. To obtain the deadlines, we per-
form the experiments by scheduling requests on the site’s cluster without the Cloud using
aggressive backfilling. After that, the deadline dj of a request j is calculated using Equa-
tion 6.5:

dj =

{
stj + (taj ∗ sf), if [stj + (taj ∗ sf)] < ctj

ctj, otherwise
(6.5)

where stj is the request j’s submission time, ctj is its completion time, taj if the job’s turn
around time (i.e. the difference between the request’s completion and submission times)
and sf is a stringency factor that indicates how urgent the deadlines are. If sf = 1, then
the request’s deadline is the completion time under the aggressive backfilling scenario.
We evaluate the strategies with different stringency factors (i.e. 0.9, 1.3 and 1.7 termed
tight, normal, and relaxed deadline scenarios respectively).

 0

 10

 20

 30

 40

 50

 60

 70

5 10 15 20 25 30 35 40 45 50 55 60 65 70

No
n-

vio
la

tio
n 

co
st

(%) of deadline constrained requests

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative
Weighted Queue

Aggressive

 0

 50

 100

 150

 200

 250

 300

5 10 15 20 25 30 35 40 45 50 55 60 65 70

No
n-

vio
la

tio
n 

co
st

(%) of deadline constrained requests

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative
Weighted Queue

Aggressive

 0

 50

 100

 150

 200

 250

 300

 350

5 10 15 20 25 30 35 40 45 50 55 60 65 70

No
n-

vio
la

tio
n 

co
st

(%) of deadline constrained requests

 (d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue

Conservative
Weighted Queue

Aggressive

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Am
ou

nt
 s

pe
nt

 ($
)

(%) of deadline constrained requests

Tight Deadlines

(d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue
Conservative
Weighted Queue
Aggressive

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Am
ou

nt
 s

pe
nt

 ($
)

(%) of deadline constrained requests

Normal Deadlines

(d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue
Conservative
Weighted Queue
Aggressive

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

5 10 15 20 25 30 35 40 45 50 55 60 65 70

Am
ou

nt
 s

pe
nt

 ($
)

(%) of deadline constrained requests

Relaxed Deadlines

(d) (e) (f)

(a) (b) (c)

Naive
Shortest Queue
Conservative
Weighted Queue
Aggressive

Figure 6.3: The top graphs show the amount spent using resources from the Cloud
provider; the bottom graphs show the cost of decreasing deadline violations under dif-
ferent numbers of deadline constrained requests and different types of deadlines. Each
data point is the average of 5 simulation rounds.

The results of this experiment are depicted in Figure 6.3. The top graphs show the
amount spent using resources from the Cloud provider to reduce the number of dead-
line violations. The Conservative and the Aggressive deadline strategies spend smaller
amounts than the remaining strategies because they are designed to consider deadlines.
Other strategies – except the naı̈ve – sort the requests according to deadlines; however
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take into account other performance aspects such as minimising response time when redi-
recting requests to be scheduled on the Cloud. With a small proportion of deadline con-
strained requests with tight deadlines, the aggressive strategy had a smaller cost than the
conservative strategy. With normal deadlines and a large number of deadline constrained
requests, the aggressive strategy spends more than the conservative strategy.

We decided to evaluate the aggressive deadline strategy further in a scenario consider-
ing only the site’s resources and a case considering the site and the Cloud. If the deadline
of a request cannot be met, the request is rejected. This experiment evaluates how much
the organisation would need to spend to decrease the number of requests rejected. The
results are summarised in Figure 6.4.
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Figure 6.4: (a) amount spent using resources from the Cloud provider; (b) the decrease of
requests rejected. Each data point is the average of 5 simulation rounds.

Figure 6.4 (a) shows the amount spent on the Cloud and (b) depicts the percentage of
requests rejected when the Cloud is used and not used. An amount of US$3,000 is spent
on the Cloud to keep the number of requests rejected close to zero under a case where
70% of the requests have deadlines. With normal deadlines, the strategy did not spend
more than US$1,500 in any quantity of deadline constrained requests.

Again using traces from the SDSC Blue Horizon, the last experiment evaluates the
amount of money spent using the Cloud infrastructure under different scheduling strate-
gies, and compares the improvement of the strategies to a scenario where requests were
scheduled using only the site’s resources under aggressive backfilling. Table 6.1 sum-
marises the results. All strategies perform similarly in terms of AWRT improvement.
However, the proposed strategy set based on selective backfilling yields a better ratio of
slowdown improvement to amount of money spent for using Cloud resources.

Table 6.1: Performance using workload traces (averages of 5 simulation rounds).

Metric description Naı̈ve Shortest
Queue

Weighted
Queue Selective

Amount spent with VM instances ($) 5478.54 5927.08 5855.04 4880.16
Number of VM instances/Hours 54785.40 59270.80 58550.40 48801.60
AWRT (improvement) 15036.77 15065.47 15435.11 14632.34
Overall request slowdown (improvement) 38.29 37.65 38.42 39.70

The experimental results described in this section show that the cost of increasing the
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performance of application scheduling is higher under a scenario where the site’s cluster
is under-utilised. However, the cost-benefit of using a naı̈ve scheduling strategy can be
smaller than using other approaches as a large cost is incurred under scenarios of high
system utilisation. In addition, request backfilling and redirection based on the expansion
factors (i.e, selective backfilling) have shown a good ratio of slowdown improvement to
amount of money spent for using Cloud resources.

6.6 Conclusion
This chapter considered the case of an organisation that operates its computing infras-
tructure, but wants to allocate additional resources from a Cloud infrastructure. The ex-
periments evaluated the cost of improving the performance under different strategies for
scheduling requests at the organisation’s cluster and the Cloud provider. Naı̈ve scheduling
strategies can result in a higher cost under heavy load conditions. Experimental results
showed that the cost of increasing the performance of application scheduling is higher
under a scenario where the site’s cluster is under-utilised. In addition, request backfilling
and redirection based on the expansion factors (i.e selective backfilling) showed a good
ratio of slowdown improvement to the money spent for using Cloud resources.

As shown in this chapter, commercial providers are increasingly relying on virtual-
isation technology to manage their infrastructure. The model presented in this chapter
has used a lease abstraction, which has also been followed in realising the architecture as
discussed in Chapter 7.



Chapter 7

Realising the InterGrid

This chapter presents the realisation of the architecture for interconnecting Grids. The
resulting system aims to provide an execution environment for running applications on
top of interconnected Grids. The system uses virtual machines to construct distributed
virtual environments that span multiple computing sites across the Grids. A distributed
virtual environment, also termed execution environment, is a network of virtual machines
created to fulfil the requirements of an application, running isolated from other execution
environments.

7.1 Introduction
The complexity of deploying applications in Grid environments has increased due to the
hardware and software heterogeneity of the resources provided by the organisations within
a Grid. This scenario makes efforts on interconnecting Grids even more difficult. Re-
cently, virtualisation technologies have facilitated the deployment of applications. Virtual
Machine (VM) technologies have enabled the creation of customised environments atop
a physical infrastructure and the emergence of new models such as Infrastructure as a
Service (IaaS) and Cloud computing [9, 193].

As described in Chapter 6, these factors can result in the creation of execution envi-
ronments that span both commercial and non-commercial computing sites. Furthermore,
virtualisation technologies minimise previous barriers to the inter-operation of Grids, such
as the execution of unknown applications and the lack of guarantees over resource con-
trol, and can ease the deployment of applications spanning multiple Grids, by allowing
resource control in a containment manner [146]. Under this scenario, the resources one
Grid allocates from another are used to deploy virtual machines that run isolated from the
physical host’s operating system.

To realise the InterGrid architecture, we consider a scenario where applications are de-
ployed across several computing sites, or Grids, by means of virtualisation technologies.
These applications run on networks of virtual machines, or execution environments, cre-
ated on top of the physical infrastructure. It is therefore essential to provide a system that
allows the allocation of resources to run virtual machines across multiple sites. The work
in this chapter describes design and implementation details of the InterGrid. The work
realises the architecture proposed in Chapter 3, and describes a system that enables the
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allocation of virtual machines and the deployment of applications at multiple computing
sites.

7.2 Requirements and Component Interactions
During the system design and implementation, we opted for using virtual infrastructure
managers that enable the management of virtual machines on physical resources (dis-
cussed in Section 7.3). This section presents the requirements of the resource manage-
ment system employed by the provider sites, the Distributed Virtual Environment (DVE)
Manager utilised by users to instantiate a DVE, and the InterGrid Gateway (IGG) that
represents a Grid or organisation participating in the InterGrid.

The InterGrid expects a minimum set of features from the resource provider. It ex-
pects the resource provider to supply information about the availability of resources. In
addition, when the IGG presents a permission to the provider, the latter must be able
to allocate and initialise the resources, which can correspond to fetching the disk image
required by the virtual machine and performing initial network configuration.

The major requirements of the InterGrid are organised according to its main compo-
nents. The features of the resource provider are as follows:

• Collect information from the resource management system at the provider’s site.

• Supply information about the availability of resources to IGGs as free time slots.
The decision on which resources to offer to the IGG is performed based on the
provider’s provisioning policies.

• Initialise resources and perform initial host and network configuration.

The main features of IGGs are to:

• Receive free time slots and update the resource repository.

• Select and assign resources to DVEs based on the Grid-level provisioning policies.

• Negotiate upon and acquire resources from other IGGs.

• Provide resources to other IGGs based on the IGG’s resource sharing policies.

DVE Managers present the following requirements:

• Handle requests from a user application.

• Acquire resources from the InterGrid.

• Contact the resource provider sites to utilise the resources allocated by IGGs.

• Deploy services on the resources allocated.

• Manage resources allocated to the DVE, trigger allocation of additional resources,
or release resources.
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7.3 System Design and Implementation

This section provides details about the implementation of the InterGrid. We first justify
our design decision on using virtual machine technology. After that, we describe the
design and implementation choices on the InterGrid Gateway. Later, we describe the
Virtual Machine Manager, which interacts with virtual infrastructure managers such as
Open Nebula [76] and IaaS providers such as Amazon Elastic Compute Cloud (EC2) [4].
After that, we explain how the DVE Manager works.

7.3.1 Virtualisation Technology

The use of virtual machines [15] in distributed systems brings several benefits such as:

• Server consolidation, allowing workloads of several under-utilised servers to be
placed in fewer machines.

• The ability to create virtual machines to run legacy code without interfering in other
applications’ APIs.

• Improved security through the creation of sandboxes for running applications with
questionable reliability.

• Dynamic provision of virtual machines to services, allowing allocation of resources
to applications on the fly.

• Performance isolation, thus allowing providers to offer some levels of guarantees
and better quality of service to user applications.

As discussed in Chapter 2, existing systems can manage a physical infrastructure by
enabling users to create virtual workspaces [108] or virtual clusters [38, 76, 77, 133] atop
the actual physical infrastructure. These systems can bind resources to virtual clusters or
workspaces according to the demands of user applications. They also provide an interface
through which the user can allocate virtual machines and configure them with the oper-
ating system and software of choice. These resource managers allow the user to create
customised virtual clusters using shares of the physical machines available at the site.

Virtualisation technology minimises some security concerns inherent to the sharing of
resources among multiple computing sites. Although users can have administrative rights
on the operating system running on their allocated virtual machines, in some categories
of virtualisation users do not have rights on the host’s operating system. Due to the ben-
efits of using virtual machines, we decided to use virtualisation technology to enable the
creation of the execution environments described earlier in this thesis. In addition, rely-
ing on virtual machines eases the deployment of the execution environments on multiple
computing sites. A user application can have better control over the update of software
and libraries installed on the resources allocated from the sites without compromising the
operation of the hosts’ operating systems.
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7.3.2 Virtual Infrastructure Managers (VIMs)

The IGG utilises Open Nebula [76] to manage the virtual machines at computing sites.
Open Nebula, termed here as a Virtual Infrastructure Manager (VIM), provides a software
layer between a service and physical infrastructure, which enables the dynamic provi-
sion of resources to services. This software layer brings several benefits to the resource
provider as it allows for dynamic resizing of the physical infrastructure, and partitioning
of the managed cluster. OpenNebula allows a user to start, manage, and stop virtual ma-
chines according to the provisioning policies in place. The IGG is also able to deploy
virtual machines on Amazon EC2 [4].

7.3.3 InterGrid Gateway

The InterGrid Gateway has been implemented in Java. The main components of the IGG
are depicted in Figure 7.1.
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Figure 7.1: Main components of the InterGrid Gateway.

Communication Module: is responsible for message passing. This module receives mes-
sages from other entities and delivers them to the components registered as listeners for
those message types. This module also provides the functionality to send messages, allow-
ing system entities to communicate with one another. Message-passing makes gateways
loosely coupled and allows for more failure-tolerant communication protocols. In addi-
tion, sender and receiver are de-coupled, which makes the system more resilient to traffic
bursts. Figure 7.2 describes the design of the communication module. The messages are
handled by one central component, the Post Office, which associates each incoming mes-
sage with a thread that in turn forwards the message to all listeners. Threads are provided
by a thread pool. If the thread pool is empty when a message arrives, the Post Office puts
the message in a queue to wait for an available thread. Listeners are message handlers.
Each listener is notified at the arrival of a new message; a listener can decide to handle
the message or not based on the message type.
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Figure 7.2: Design of the communication module.

Management and Monitoring: the management of the IGG is performed via Java Man-
agement Extensions (JMX).1 JMX is a standard API for management and monitoring
of resources such as Java applications. It also includes remote access, hence a remote
program can interact with a running application for management purposes. Remote ac-
cess handles secured user identifications and authorisations. Typical uses of the JMX are
querying or changing application configuration, accumulating statistics about application
behaviour, and notification of state changes.

The IGG exports, via JMX, management operations such as establishment of peering
agreements, connection and disconnection to other IGGs, shutdown, and management of
virtual machine services. These operations are accessible through JConsole, which is a
graphical client provided by the standard distribution of Java to connect to any applica-
tion using JMX. In addition, we provide a command line interface that interacts with the
components via JMX. The use of JMX enables further instrumentation and management
of the gateway by third party management tools.

Persistence: the IGG uses a relational database in order to guarantee the persistence of in-

1http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/
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formation. The database persistently stores information such as peering arrangements and
templates for virtual machines (explained in Section 7.3.4). The IGG uses the database
provided by the Apache Derby project.2

Scheduler: this component comprises other sub-components, namely resource provision-
ing policy, peering directory, request redirection, and enactment module. The enactment
module interacts with the Virtual Machine Manager to create, start, or stop virtual ma-
chines to fulfil the requirements of the scheduled requests. The Virtual Machine Manager
is described in the next section. The Scheduler maintains the availability information
obtained from the Virtual Machine Manager and schedules requests for virtual machines.
The Scheduler keeps track of the resources available using the same data structure utilised
by the discrete-event simulations described in previous chapters.

7.3.4 Virtual Machine Manager (VM Manager)
The VM Manager is the link between the IGG and the resources. As described before-
hand, the IGG does not share physical resources directly, but depends on virtualisation
technology to abstract them. Hence, resources allocated by the IGG to a DVE are virtual
machines. The VM Manager relies on a VIM, which controls the virtual machines on a set
of physical resources. Typically, VIMs are able to create, pause, resume, and stop virtual
machines on a physical cluster. In addition, the VM Manager controls the deployment of
virtual machines on an IaaS provider. Before describing the VM Manager, this section
introduces the concept of virtual machine templates and a directory service.

Virtual Machine Template: Open Nebula’s terminology is used to explain the idea of
templates for virtual machines. A template is analogous to a computer’s configuration. It
describes a type of virtual machine, and contains the following information:

• Number of cores or processors to be assigned to the virtual machine.

• Amount of memory required by the virtual machine.

• Kernel used to boot the virtual machine’s operating system.

• The disk image that contains the operating system.

• Price for using a virtual machine of this type for one hour.

The information provided in a virtual machine template is static, described once and
reused every time a new virtual machine is created. A virtual machine under deploy-
ment or in execution is termed an instance. The administrator responsible for the IGG
provides this static information at the set-up phase of the infrastructure. Moreover, the
administrator can update, insert, or remove templates at any time. However, as of writing
this chapter, each IGG in the InterGrid network should have a list of templates that are
common across all IGGs; that is, a template created at one IGG must have equivalent
templates at other IGGs.

During the deployment of a virtual machine, the VM Manager creates a virtual ma-
chine descriptor. The descriptor contains the information from the original template and

2http://db.apache.org/derby/
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additional information about the virtual machine instance under deployment or in execu-
tion. The additional information is:

• The actual path to the disk image that contains the file system for the virtual ma-
chine.

• The IP address of the physical machine that hosts the virtual machine. This infor-
mation is required in testbeds with a mixture of public and private IP addresses.

• The network configuration of the virtual machine.

• For deploying a virtual machine on an IaaS provider, the required information to
access the remote infrastructure such as account information.

The deployment process configures the network interface for the virtual machine. The
VM Manager module currently works with a pool of Media Access Control (MAC) ad-
dresses and corresponding IP addresses. At the deployment phase, the VM Manager
clones the template, adds the necessary network configuration to it, such as the MAC ad-
dress, and converts the template to the format recognised by the underlying VIM. In the
current implementation, the only information added to the template passed to the VIM is
the MAC address. We rely on Dynamic Host Configuration Protocol (DHCP) to guaran-
tee that the instance with the assigned MAC address is configured with the corresponding
IP address from the pool.

In addition, the VM Manager updates the disk image information obtained from the
template with the path to a copy of the original image. This allows the system to deploy
several instances of the same template without requiring the instances to share the same
file system. There are implementation details that are specific to each interface with un-
derlying VIMs. For example, the VM Manager that interfaces with OpenNebula builds
an initial pool of disk images. When a virtual machine is requested, the VM Manager
assigns a disk image copy from the pool.

When deploying a virtual machine on an IaaS provider, not all the information de-
scribed earlier is required. For example, network information such as MAC and IP ad-
dresses are not mandatory for using Amazon EC2 because a public IP address is automat-
ically assigned by EC2. In addition, EC2 is responsible for seamlessly cloning the disk
images for running several instances of the same template in parallel. However, before
creating an instance on Amazon EC2, the disk image must be uploaded to Amazon’s in-
frastructure. Currently, we upload the disk image beforehand and ensure that all templates
registered in the IGG have their disk images in EC2.

Virtual Machine Template Directory: the IGG works with a repository of virtual ma-
chine templates; that is, templates can be registered to the repository by the administra-
tor responsible for the IGG. A user or a DVE manager, can request instances of virtual
machines whose templates are registered on the IGG’s repository. In addition, the IGG
administrator has to upload the images to Amazon if the IGG uses the Cloud as a resource
provider. At the moment, it is not possible for the user to submit her own virtual machine
templates or disk images to the IGG.

Virtual Machine Manager: allows the gateway to submit and deploy virtual machines
on a physical infrastructure, and interacts with a VIM to create or stop virtual machines on
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the cluster. The VM Manager implementation is generic to connect with different VIMs.
We have developed connectors to Open Nebula and Amazon EC2. The connection with
Open Nebula uses a Java API to submit and stop virtual machines and to transform our
virtual machine template to the format that Open Nebula recognises. Open Nebula runs
as a daemon service on a master node, hence the VM Manager works as a remote user of
Open Nebula.
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Figure 7.3: Design of the Virtual Machine Manager Service.

Figure 7.3 shows the interaction between the IGG, the template directory, and the VM
Manager. We have also implemented a connector to deploy virtual machines on Amazon
EC2. The connector wraps the command line tools provided by Amazon. In addition to
the Open Nebula and Amazon EC2 connectors, we have developed a VIM emulation for
testing and debugging purposes.

7.3.5 Distributed Virtual Environment Manager (DVE Manager)
A DVE Manager interacts with the IGG by making requests for virtual machines or query-
ing their status on behalf of the user application it represents. Once a request is sent to
the IGG, the DVE Manager starts to query the IGG to obtain the request status. The com-
munication is asynchronous and a call back mechanism is not provided at the moment
because the DVE Manager may not be in execution during the whole request’s life cy-
cle. For example, a DVE Manager can make reservations for virtual machines for a few
days in the future, stop its execution, and restart when the start time of the reservations
approaches.

A virtual machine request can be in one of the following statuses:

• Unknown: the request has been created, but has not been submitted to any IGG.
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• Pending: an IGG has received the request, but has not scheduled it yet. The IGG’s
scheduler is either waiting for a free time slot in which the request can be placed, or
is trying to redirect the request to another IGG.

• Scheduled: the request has been scheduled by an IGG. The potential start and finish
times for the request have been established.

• Cancelled: either the user or the IGG have cancelled the request’s execution.

• Failed: the request has failed due to an error, which is reported by the IGG.

• In progress: the request has started, the virtual machines have been created, and
the binding information has been obtained.

• Completed: the request’s finish time has lapsed and the request has finished.

At the moment, when the reservation starts, the DVE Manager receives a list of virtual
machines as tuples of public IP/private IP, with which the DVE Manager sets Secure
Shell (SSH) tunnels3 to access the virtual machines. The DVE manager then handles the
deployment of the user applications. With EC2, virtual machines have public IPs, hence
the DVE can access the virtual machines directly without tunnels.

7.4 Conclusion
This chapter presented the realisation of the architecture for interconnecting Grids. The
system prototype relies on virtualisation techniques because they minimise security con-
cerns present in the sharing of resources between Grids. Resources allocated by an Inter-
Grid Gateway from another are used to run virtual machines on which the user applica-
tions are deployed.

The InterGrid Gateway relies on virtual infrastructure managers to control the exe-
cution of virtual machines on a cluster of physical machines. This architecture can also
be used in scenarios such as those described in Chapter 6 where the capacity of an or-
ganisation’s cluster is extended by allocating resources from commercial providers. The
provided implementation of InterGrid Gateways can allow the co-ordination required to
enable the use of commercial and non-commercial infrastructures. In this way, the system
provides the means to create execution environments for running applications on top of in-
terconnected Grids. These Grids can comprise commercial and non-commercial resource
providers.

3http://en.wikipedia.org/wiki/Secure Shell





Chapter 8

Conclusions and Future Directions

8.1 Discussion
We began this PhD research with one general challenge: the deployment of applications
using resources from multiple computational Grids. We opted to approach the challenge
of deploying applications across Grids from a resource management perspective, thus
this thesis focused on mechanisms that can allow Grids to share computational resources.
Solutions for resource sharing between computational Grids need to meet requirements
such as interoperability between Grid middleware, interfaces with existing Grid resource
management systems, provision of a general infrastructure and dynamic collaborations,
use of a decentralised architecture, respect for administrative separation, deal with two
levels of resource contention, and provide incentives for interconnected Grids.

This thesis then investigated existing work on resource management systems for clus-
ters and Grids, and enumerated several characteristics of existing systems such as their
architectural views, operational models, arrangements between schedulers, resource con-
trol techniques, and support for virtual organisations. This investigation revealed:

• An extensive literature on job scheduling among clusters (i.e. within a Grid);

• Some efforts on interoperability between Grid middlewares; and

• Attempts to federate large-scale testbeds.

The investigation revealed a lack of mechanisms that build on these efforts, enable re-
source sharing between Grids, and meet the requirements described earlier. These lessons
led to a proposed architecture for interconnecting Grids. The proposed architecture is
based on InterGrid Gateways that mediate access to the resources from the interconnected
Grids. The architectural views contribute to the Grid computing area by enhancing and
building on existing work on job scheduling within Grids. This architecture is inspired
by observing the manner in which Internet Service Providers (ISPs) establish peering ar-
rangements in the Internet. ISP peering arrangements define the terms under which they
allow traffic into one another’s networks. The concept of peering arrangements, which has
allowed the Internet to grow to its current stage, was missing in Grid computing. There-
fore, the proposed architecture considers that Grids establish peering arrangements with
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one another, and that these arrangements define the conditions under which resources are
shared by the Grids.

Enabling resource sharing between Grids, and the consequent use of resources from
multiple Grids by applications, has proven difficult. The resources within a Grid are
generally clusters of computers managed by queue-based resource management systems.
Moreover, these clusters of computers generally agree to provide resources to a Grid,
but have local users whose demands also have to be satisfied. This scenario leads to
contention for resources between the Grid applications and the providers’ local users. To
enable resource sharing between Grids, each individual Grid should be able to estimate
the availability of resources from its providers in order to accommodate the requests of
its Grid users and from other Grids. Further on, this thesis focused on improving the
provisioning of resources to applications within Grids.

With respect to improving resource provisioning within Grids, the thesis proposed ex-
tensions to existing batch schedulers that ease the gathering of availability information to
provision resources between Grids. The thesis also investigated provisioning techniques
based on multiple resource partitions that enable providers to offer resources to the Grid
and satisfy the requirements of their local users. In addition, experiments evaluated the
reliability of the availability information obtained with different strategies and the impact
of this reliability in resource provisioning within a Grid. Simulation results obtained by
modelling the DAS-2 Grid environment showed that it is possible to provision resources
to Grid applications without requesting providers to disclose their resource availability in-
formation too frequently. A very small number of violations (i.e. cases of contentions for
resources) and improved job slowdown are achieved if the information is disclosed every
15 to 30 minutes. These results showed an overhead reduction compared to other tech-
niques wherein the availability information is obtained upon the schedule of each individ-
ual request. Moreover, the provisioning strategies based on multiple resource partitions
improved the job slowdown of both providers’ local jobs and Grid jobs, thus showing the
viability of such approaches to enable provisioning of resources to Grid applications and
further resource sharing between Grids.

This exercise on provisioning policies later motivated the investigation of a load man-
agement mechanism to provide resource sharing between Grids. The mechanism relies
on the resource availability information obtained using the provisioning strategies de-
scribed earlier; information ultimately used to guide InterGrid Gateways on decisions
about resource request redirection. Aware that Grid infrastructures are expensive to main-
tain and operate, the proposed resource sharing mechanism redirects requests based on
their marginal cost of allocation. Simulation results showed that overall Grids have in-
centives to interconnect, demonstrated for example by slowdown improvements of Grid
jobs. The experiments also showed that the mechanism is efficient in balancing the load
across the interconnected Grids. The proposed provisioning strategies described earlier
yielded good performance, and interestingly, improved the slowdown of jobs even un-
der scenarios with no interconnection between Grids. These improvements with no Grid
interconnection were achieved when compared to aggressive backfilling, which is a strat-
egy used frequently by Grid resources. The interconnection of Grids, therefore, showed a
positive impact on the execution of Grid applications.

While investigating mechanisms to enable sharing resources between Grids, we no-
ticed increasing availability of commercial infrastructures. These infrastructures are of-
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fered to users by resource providers in a pay-per-use manner and are gaining popularity.
Evidence has shown that these infrastructures can be suitable for executing certain types
of Grid applications [48, 138]. This thesis later investigated scenarios wherein commer-
cial infrastructure can be used to improve resource provisioning in Grids. Under these
scenarios, Grids are composed of resources from commercially available providers and
academic institutions. This thesis investigated a provisioning scenario where the capacity
of clusters of computers is expanded by allocating resources from commercial infrastruc-
ture, giving consideration to the cost of performance improvements obtained by using
commercial infrastructure. The thesis further investigated whether different provisioning
strategies yield different ratios of performance improvement and money spent using re-
sources from commercial providers. Simulation results showed that strategies can indeed
have different costs for the performance improvement they yield. Strategies based on se-
lective backfilling can have better slowdown improvements using fewer resources from
the commercial providers. Experiments with deadline constrained requests demonstrated
that for a cluster of 144 nodes and any combination of deadline urgency and number of
deadline constrained requests, the amount of money spent to keep the number of rejected
requests close to zero over a two month period, remained below US$3,000. This repre-
sents a small cost when operating an infrastructure of 144 nodes.

Furthermore, this thesis provided the building blocks to propose and evaluate mech-
anisms for deploying applications in environments that are a mixture of commercial and
non-commercial infrastructures. The study on commercial providers lays the basis to in-
vestigate adaptive provisioning techniques that strike the balance between performance
improvement and money spent with commercial infrastructure. This research also pro-
vides a basis for resource provisioning in scenarios where a mixture of commercial and
non-commercial infrastructure is used.

We realised the proposed architecture by presenting a system prototype that relies on
virtual machine techniques to accommodate user requests. Resources exchanged by Grids
are used to deploy virtual machines. Some design decisions, such as the use of virtuali-
sation technology, were made because they minimise some security concerns inherent to
the sharing of resources among organisations and consequently, the sharing of resources
between Grids. The proposed system can allocate virtual machines from different sites
by utilising Virtual Infrastructure Managers (VIMs) such as OpenNebula [76]. These
VIMs are used to start, pause, and stop virtual machines. The system also enables the
management of virtual machines at commercially available resource providers who use
virtualisation solutions to manage their infrastructures.

8.2 Future Directions

Some research topics relevant to the interconnection of Grids and the deployment of ap-
plications on multiple Grids have not been addressed in this thesis. Some of these issues
have been discussed in previous work [46]; others were identified here. This thesis has
focused on resource provisioning and sharing, thus leaving future work in the following
areas:
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8.2.1 Resource Discovery and Availability Information

The InterGrid can use discovery systems and networks to locate resources to execute a job.
This thesis focused on computational resources and considered a resource provisioning
model where providers either (i) inform the InterGrid Gateway about the resource avail-
ability or (ii) the gateway queries providers for the resource availability. As the providers
have their local users, the gateways have partial information about the actual availability
of resources. Gateways further use this information to redirect requests across Grids.

One important issue to investigate is an approach to disseminate the availability in-
formation across Grids in a manner that is useful for provisioning resources to deploy
execution environments spanning multiple Grids. Gossiping protocols can be relevant
to disseminate the information on resource availability [68]. Alternatively, gateways can
make provisioning decisions based on probabilistic resource claims that are verifiable and
traceable back to the issuer [86]. The proposition here is that resource discovery networks
based on imprecise information such as that disseminated by gossiping protocols can pro-
duce acceptable provisioning solutions and improve the performance of Grid applications.

8.2.2 Co-ordination Mechanisms

As described by Boghosian et al. [20], to execute applications on multiple Grids it is nec-
essary to have some degree of co-ordination between Grids. However, this co-ordination
is currently only achieved at a person-to-person instead of a system-to-system level. Thus,
it is important to investigate mechanisms that enable the co-ordination between Grids in
order to co-allocate resources.

8.2.3 Virtualisation Technology and Commercial Resource Providers

The use of virtualisation technology in Grid computing brings several benefits, but also
creates a new set of challenges. If physical resources are used to run virtual machines,
which in turn are used to execute applications and services, we have two instances of the
allocation problem: the first being where physical resources are provisioned to virtual ma-
chines, the second being where applications are scheduled on available virtual machines.
Furthermore, the deployment of virtual machines requires the transfer of disk image files.
These conditions can be seen simply as new constraints of the scheduling problem, but in
practice they impact the performance of applications.

Some systems consider that image files required by virtual machines are pre-deployed
on all computing sites. In future work, it would be interesting to relax this assumption
and enable users to upload their virtual machine images.

When using commercial infrastructure, it would be important to investigate adaptive
provisioning strategies that can strike a balance between performance improvements and
the money spent. In this way, under peak-load conditions, a resource provider can opt for
allocating resources from a commercial infrastructure to honour existing user contracts.

In addition, it would be relevant to study the performance of Grid applications in
these scenarios. If Grids incorporate commercial providers, it is important to evaluate the
performance of applications such as bags-of-tasks under scenarios that mix commercial
and non-commercial organisations.
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8.2.4 Application Models and Distributed Virtual Environments
Another important area of future study relates to application models that can benefit from
using resources from multiple Grids. The InterGrid environment requires application
models that are able to adapt to the dynamicity of the environment and report the need
of resources to management entities [184]. We envision that the execution environments
described in this thesis can increase or decrease their allocations based on the needs of
the applications they encapsulate. However, allocating resources to these environments
depends on several factors such as:

• Cost of using the resources;

• Time and overhead for changing allocations; and

• Peering arrangements established between Grids.

This thesis has neither focused on application models nor on the adaptation of the
execution environments to the demands of the applications and the conditions of multi-
Grid environments.

8.2.5 Fault Tolerance
The issues described here are also related to the topics discussed earlier. In multi-Grid en-
vironments, resource failures can occur for various reasons: variations in the configuration
of the environment, non-availability of required virtual machines, overloaded resource
conditions, and faults in computational and network fabric components [75]. One way of
dealing with this problem is to find alternative resources and restart or migrate the execu-
tion of applications. Current check-pointing mechanisms based on the job abstraction may
not be enough, as the migration of execution environments requires the check-pointing of
virtual machines. As the migration of virtual machines in local area networks becomes
more reliable, virtual machine technology can be used to provide the means for migrat-
ing execution environments and the recovery from failures. However, these requirements
demand advancements both in strategies and mechanisms for handling fault tolerance in
applications for the InterGrid, which have not been addressed in this thesis.

8.2.6 Peering Arrangements and Policy Enforcement
This thesis has considered that Grids have pre-defined peering agreements that specify
the conditions under which they exchange resources. This assumption is based on the fact
that interconnecting Grids can require negotiations over network links and resources that
are made available to users of each Grid.

It would be relevant to consider transitive relationships between the InterGrid gate-
ways, in which one Grid A can allocate resources from a Grid C via an agreement with a
third Grid B. That is, Grid A has an agreement with B, which in turn has an agreement
with C. Grid A could access Grid C’s resources if a delegation of resources has been
made previously by Grid C to Grid B and Grid B decides to grant access to Grid A over
the resources of Grid C.
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In addition, Grids can have internal policies that define how many resources can be
used by a given user group or virtual organisation. Enforcing allocation policies within
a Grid is a challenge that becomes more complex if peering arrangements between Grids
are considered. These issues have not been addressed in this thesis and would be relevant
to future work. Other efficient mechanisms for resource sharing between Grids are also
worth investigating.

Moreover, similarly to the peering arrangements between ISPs, Grids can have asym-
metric agreements that define bulk shares of resources allocated from one another. The
investigation of these peering relationships and their implications on applications’ perfor-
mance are further relevant topics to investigate.

8.2.7 Implementing Provisioning Strategies on a Real Grid Testbed
The evaluation of the resource provisioning and peering strategies proposed in this thesis
was carried out through discrete-event simulation. In future work, it would be relevant
to implement some of the proposed strategies on a real Grid testbed. In addition, early
attempts have been made to evaluate the scenario considered in Chapter 6 using the real
system implementation proposed in Chapter 7.



Appendix A

A Data Structure to Facilitate
Provisioning

This appendix presents details about a data structure for managing job scheduling and
reservations for computing resources in clusters of computers and virtualised infrastruc-
tures. The data structure uses a red-black tree whose nodes represent the start times or
completion times of application jobs and reservations. The tree is enhanced by a linked
list that facilitates the iteration of nodes once the start time of a reservation is found using
the tree. We present an implementation of this data structure suitable for both simulations
and real systems, describe its main features and provide an example on its use.

A.1 Introduction
Deadline-constrained applications demand predictable Quality of Service (QoS) [168],
often requiring a number of computing resources to be available over a period, commenc-
ing at a specific time in the future. Advance reservations are attractive in these scenarios
as they provide means for reliable allocations and allow users to plan the execution of
their applications.

Recent advances in computing technology have led to the emergence of systems that
rely on virtual machines (VMs) for allocating resources to user applications according to
their demands. For their scheduling decisions, these systems generally maintain infor-
mation about resource availability in data structures or databases [104]. Resource man-
agement systems often handle numerous requests per minute, with each job arrival or
completion triggering scheduling operations requiring several accesses to the data struc-
ture. Efficient data structures are essential to timely check whether advance reservations
can be accommodated or to provide alternatives to users with flexible requests [153]; op-
erations generally termed as admission control. Moreover, if resource availability exists
and a request is accepted, the data structure must be accordingly updated.

In this appendix, we describe a data structure for storing computing resource avail-
ability and performing admission control of application jobs and reservations. The data
structure relies on a red-black tree; a binary search tree with one additional attribute per
node: its colour, which can be either red or black [40]. A red-black tree is approximately
balanced as the manner nodes are coloured from the root to a leaf ensures that no path
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is more than twice as long as any other. After modifying the red-black tree, rotation and
colour change operations guarantee the tree remains approximately balanced.

The nodes of the red-black tree contain the processing elements or computing nodes
available at particular times in the future; these times correspond to the start and/or com-
pletion times of requests. The red-black tree is used to locate the node that represents
the start of a request, also termed as anchor node, whereas the iteration of nodes once the
anchor is found is facilitated by a double linked list. Using the linked list, all nodes until
the supposed completion of the job are verified to check if there are processors available
to admit the job into the system.

The data structure is termed “Availability Profile”, or “Profile” for short, as it repre-
sents the availability of a specified cluster; the information of processing elements as jobs
or reservations start or complete.

A.2 Background and Related Work

A.2.1 Advance Reservations

Emerging deadline-constraint applications require resources to be allocated over a pre-
defined period. Moreover, large scale experiments may demand the co-allocation of re-
sources across several computing sites [20]. This co-allocation of resources and provision
of QoS guarantees is achievable in resource management systems by allowing the user to
make reservations of resources in advance.

A data structure generally stores the information of resources available until a partic-
ular time in the future. The data structure is examined in order to allow a request to be
admitted or not. This period over which the availability information is stored depends on
the resource allocation policy in use. For example, for a computing resource allocation
policy that schedules jobs following a conservative backfilling approach [128], this period
may vary if each job’s schedule is decided when it arrives at the cluster. For an aggressive
backfilling policy [116], this period will probably be shorter as the scheduler maintains
the scheduling details about running jobs and the first job in the waiting queue.

A.2.2 Data Structures Using Slotted Time and Non-Slotted Time

Some data structures, generally referred to as slotted-time-based, divide the period over
which the availability information is stored in time slots of equal length [26, 173]. In
this case, a request, if accepted, is allocated consecutive slots for a period long enough to
accommodate the request. In addition, the request is allocated a number of slots whose
total length may be equal or greater than the initial time requested by the reservation.

The data structure presented in this appendix uses non-slotted times, allowing for a
finer time granularity for the requests accepted as the period allocated to reservations does
not depend on the time duration of slots. Moreover, as discussed in the next section, the
profile uses the concept of ranges of processing elements available as it needs to ensure
that the same processing elements are allocated to a request during the whole execution.
With slotted time and short slots, the profile would have this range information replicated
at all time slots, and iterating the slots would be time consuming.
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A.3 The Availability Profile
The proposed data structure is based on the idea of availability profile described by
Mu’alem and Feitelson [128], which utilises a list whose entries contain information about
the number of processors available after completion of jobs. The work in this appendix
augments this data structure by:

• allowing it to maintain information about reservations;

• using a tree to search for the start of a free time slot suitable for scheduling a job,
thus reducing the complexity from O(n) when using a sorted list to O(log n) by
using the tree; and

• storing information about the ranges of processing elements available at each node,
hence enabling various time slot selection policies, such as first-fit, best-fit and
worst-fit.

The profile utilises the idea of ranges of Processing Elements (PEs) as it needs to know
whether the selected PEs would be available over the entire period requested. This con-
trasts with data structures that store bandwidth available in a network link over a period,
as the availability at a particular time is generally given by one number [26]. The profile
needs to ensure that the same PEs are available over the period requested in a reserva-
tion as it is difficult to start a job on a set of PEs and migrate the job across PEs several
times during its execution. In this work, a PE represents a processor or a core, but the
data structure is generic enough to allow the scheduler to work with computing nodes or
virtual machines. For example, if a resource with 10 PEs is idle, then a PE range from
0 to 9 is available (i.e. [0..9]). The profile can also store availability information about
virtual machines, with each PE representing a VM on the infrastructure.

We provide an example of a resource with 13 PEs to illustrate how the data struc-
ture looks like (see Figure A.1). The time of the entries was chosen just for the sake
of illustrating how the data structure works. The scheduling queue of the computing re-
source at time 0 is shown in Figure A.1a; the queue contains both best-effort jobs and
reservations. A best-effort job is a job that is started by the scheduler as soon as enough
resources are available to handle it whereas a reservation requires resources for a well
defined time frame. We detail later the operations for obtaining a time slot to place a job
or a reservation. As jobs are inserted, the profile is updated accordingly to reflect the new
resource availability. One node is inserted for the completion of the job, containing the
time at which the job is expected to complete, the number of PEs available after the job’s
completion, and the specific ranges of PEs available once the job completes.

Figure A.1b illustrates the resulting red-black tree; shaded circles representing black
nodes. Each node represents a particular time and contains the information presented in
Figure A.1c. Each line of Figure A.1c represents the information of one node. The dashed
lines represent the linked list connecting sibling nodes, which is used to iterate the tree
and check whether there are enough PEs to serve a job over a given time interval.

For example, for the profile presented in Figure A.2, in order to perform the admission
control of a reservation request whose start time is 220, finish time is 700, and requires 2
PEs, the algorithm:
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Figure A.1: Pictorial view of the data structure: (a) a scheduling of a resource with 13
processing elements; (b) the representation of availability information as a red-black tree;
and (c) details about the information stored by the nodes.
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Figure A.2: Iterating the tree using the linked list to perform the admission control of a
reservation request to start at time 220 and finish at time 700.

1. Obtains from the reservation the start time, finish time, and number of processors
required.

2. Uses the start time of the reservation is to find the node whose time precedes the
reservation’s start time or is equals to its start time. This node is termed as the
anchor. If the node does not have enough PEs to serve the reservation, then the
request is rejected.

3. Examines the ranges if the anchor has enough PEs to serve the reservation. Then,
the linked list is used to iterate the tree and examine all nodes whose times are
smaller than the reservation’s finish time. For each node, the algorithm computes
the intersection of the node’s ranges with the ranges of previous nodes examined. If
the algorithm examines all the ranges and the resulting intersection has enough PEs
to serve the reservation, then the request is accepted.

4. Stops its execution and requests the rejected if at any time an intersection is com-
puted, the intersection does not have enough processing elements.

In summary, the tree is used to obtain the anchor for the reservation request, in this
case the node with time 215, and the list is used afterwards to iterate all nodes whose times
are smaller than the request’s finish time. The intersection of ranges is computed during
this iteration. Figure A.3a illustrates the relevant part of the profile represented as lists of
ranges of PEs over the scheduling queue, whereas Figure A.3b shows the actual schedul-
ing queue with the corresponding reservations. The request can be accepted because the
intersection of PE ranges has more PEs than what the reservation requires.

A.3.1 Operations

The implementation of the availability profile contains several operations namely to:

• Check whether a reservation with strict start and finish times can be accommodated.
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• Find a time slot over which a job or reservation with flexible start and finish times
can execute.

• Obtain the availability information (i.e. free time slots) in the profile.

• Get the scheduling options for a job or reservation, which are important for sched-
ulers based on strategies such as best-fit and worst-fit.

• Add free time slots back to the profile in case jobs are cancelled or paused.

• Reconstruct an availability profile from a list of free time slots.

• Allocate time slots to jobs or reservations.

In this section, we describe two particular operations namely the option to check the
availability in the profile (i.e. to check whether a request can be served) and to update the
profile by allocating the PE ranges selected for the request.

Check Availability

There are two important types of requests, namely those that require resources at a well
established time frame, which are here termed reservations, and those that require re-
sources when the resource provider is able to offer them, termed best-effort jobs. The
first request type represents applications that have stringent QoS requirements or require
the co-allocation of resources. Co-allocation of resources is eased by allowing a user to
reserve resources at the computing sites she wants to use. The second type of request
reflects the scenario of most applications where users are not very strict about the period
over which their jobs will run.

We have described beforehand the process of checking whether a reservation request
can be accommodated. In summary, first the node whose time is equals the start time of the
reservation or precedes the reservation’s start time is found using the red-black tree. This
node is the anchor. Secondly, the linked list is used to check all the nodes in the interval
between the anchor node and the last node before the finish time of the reservation. In this
case, the complexity for checking whether a reservation can be admitted into the system
or not is O(log n+m) or O(m), where log n is the cost of finding the anchor node in the
red-black tree and m is the number of nodes of the sub-list between the anchor node and
the last node before the finish time of the reservation request.

If we need to schedule a best-effort job, which can be served at any time, then the
algorithm that needs to schedule a best-effort job can start iterating the tree using the
current time as the start time. However, differently from the admission control of a reser-
vation request, in order to find a time slot in which a job fits, the algorithm starts with a
potential anchor node. That is, a node with enough PEs to serve the job. The intersec-
tion of the potential anchor’s PE ranges with the following nodes’ ranges until before the
expected completion of the job needs to have enough PEs to accommodate the job. The
pseudo-code for this procedure is depicted in Algorithm A.1.

The profile also provides operations that allow the scheduler to obtain the free time
slots. A free time slot contains information about the resources available over a given
time frame. In this way, a time slot has a start time, a finish time, and the ranges of
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Algorithm A.1: Pseudo-code to find a time slot to accommodate a job.
input : the job’s runtime (duration) and number of PEs (reqPE)
output: a profile entry with the job’s start time and ranges available

ctime← the current time1
iter ← iterator for the profile starting at the node that precedes ctime2
intersec← null3
pstime← ctime // stores the job’s potential start time4
pftime← −1 // stores the job’s potential finish time5
anchor ← null6
while iter has a next element do7

anchor ← the next element of iter8
if anchor.numPE < reqPE then9

continue10
else11

// a potential anchor has been found12
pstime← anchor.time // the potential start time is the anchor’s time13
pftime← pstime + duration // the potential finish time14
intersec← anchor.ranges // stores the intersections of PE ranges15
ita← iterator for the profile starting at the node after pstime16
while ita has a next element do17

nxnode← the next element of ita18
// it does not need to check the nodes beyond the potential finish time19
if nxnode.time > pftime then20

break21
else22

if nxnode.numPE < reqPE then23
// there are not enough processing elements available24
intersec← null25
break26

intersect← intersect ∩ nxnode.ranges27
if intersec.numPE < reqPE then28

// there are not enough processing elements available29
break30

if intersec.numPE > reqPE then31
// it found a slot with enough processing elements32
break33

entry ← new entry with time = pstime34
entry.ranges← intersec35
return entry36

PEs available during this period. The availability profile has two operations to obtain
the free time slots. In the first operation, the resulting free time slots do not overlap
with one another. This approach is similar to that used by Singh et al. [168] in their
extended conservative backfilling policy. The complexity of this operation is in the worst
case scenario O(log n + m2) or O(m2), where log n is the cost of finding the node that
represents the start time of the given period (i.e. the anchor) andm is the number of nodes
in the list between the anchor node and the last node before the finish time of the time
frame. In real scenarios, this operation is not invoked often, as the operations required to
check whether a request can be admitted do not rely on obtaining a list of free time slots
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from the availability profile.
The second operation returns the scheduling options [104]. In this case, the time slots

overlap. The free time slots returned by this operation are termed as scheduling options
because they represent the places in the queue where a given job or reservation can be
placed. This operation is useful if the scheduler is required to perform a more complex
selection of PE ranges for a best-effort job or a reservation request. For example, in some
systems the users are allowed to extend previous reservations or resource leases [102]. The
scheduler may be required to select a free time slot for a reservation that can accommodate
a potential extension or renewal of the resulting resource lease.

Update the Profile

Once a reservation request has been accepted or the time slot for a job has been found, the
availability profile is updated to reflect the changes. In summary, the profile needs to:

• Update the node that has been selected as the request’s anchor or insert a new anchor
in case of a reservation whose start time does not coincide with an existing node of
the tree.

• Update all entries from the anchor until before the request’s completion time, re-
moving the PE ranges selected.

• Insert a new node marking the completion time of the request and containing the
PE ranges that will be available after the request is complete.

In order to minimise the number of nodes in the tree, requests with the same start time
or completion time share nodes in the profile. The complexity of the update operation is
O(log n + m) or O(m) as it consists in inserting one element in the tree (i.e. log n) and
updating the m nodes until before the completion of the job, using the list to iterate them.

Job 1

Job 2

Reservation 1

Job 4

Scheduling Queue

Pr
oc

es
si

ng
 E

le
m

en
ts

Job 3

Reservation 2

Time

Job 1
Job 2

Job 3
Partition 1

Partition 0

Figure A.4: Example of a profile with two resource partitions.
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A.3.2 Multiple Resource Partitions
We have also introduced an availability profile to control the allocation of ranges of PEs
to different resource partitions [114]. This availability profile is termed as partitioned
profile. The idea of multiple resource partitions is depicted in Figure A.4. The nodes
in the profile store the ranges available at more than one resource partition. A user can
check the availability of a given partition as well as update that particular partition. As
the profile extends the normal profile, it is possible to create allocation polices based on
the partitioned profile, that allow a partition to borrow resources from another. In order to
enable that, the user just needs to use the operations offered by the normal profile.

A.3.3 Details of the Implementation
The data structure has been implemented in Java. We have modified the TreeMap imple-
mentation provided by Java 1.5 in order to maintain a double linked list among sibling
nodes. The modified version is called LinkedTreeMap. Figure A.5 presents the main
classes that compose the availability profiles.

checkImmediateAvailability()
checkAvailability(reqPE,start,duration)
findStartTime(reqPE,duration)
getTimeSlots(start,end)
getSchedulingOptions(start,end,duration,reqPEs)
allocatePERanges(ranges,start,end)

Profile

addTimeSlot(start,finish,ranges)
SingleProfile

checkImmediateAvailability(partId)
checkAvailability(partId,reqPE,start,duration)
findStartTime(partId,reqPE,duration)
getTimeSlots(parId,start,end)
getSchedulingOptions(partId,start,end,duration,reqPEs)
allocatePERanges(partId,ranges,start,end)
matchPartition(item)

PartProfile

getTime()
getAvailRanges()
getNumPE()

ProfileEntry

*
1

setAvailRanges(ranges)
SingleProfileEntry

*

1
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Figure A.5: Diagram containing the relevant classes of the availability profiles.

Profile and ProfileEntry are abstract classes. Profile has methods that are common
to a single partition profile (i.e. SingleProfile) and a multiple resource partition profile
(i.e. PartProfile). Similarly, PartProfileEntry extends ProfileEntry and stores information
about ranges of PEs available at the multiple resource partitions created in the profile.
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The availability profile with multiple resource partitions extends the normal profile
and provides methods to check the availability and update the profile per partition as well
as all partitions at once. The nodes in a partitioned profile contain information about the
ranges of PEs available at all partitions at a specific time.

A.4 Using the Profile
This section provides an example on how to utilise the availability profile. We show an
example of a scheduling policy based on conservative backfilling [128] for a Grid sim-
ulator. It should be straightforward to implement various policies relying on availability
profiles and the idea of ranges of PEs. We also demonstrate how to obtain the schedul-
ing options for a job so the user can perform the selection of PEs using approaches such
as best-fit and worst-fit to minimise the scheduling queue’s fragmentation and improve
resource utilisation [104].

Algorithm A.2: Sample pseudo-code of a conservative backfilling policy.
procedure jobSubmitted(Job j)1
begin2

success← startJob(j)3
if success = false then4

success← enqueueJob(j)5

end6

procedure startJob(Job j)7
begin8

ctime← gets the current time9
// obtain a node that will be used as anchor for the job10
anchor ← profile.check(j.numPE, ctime, j.runtime)11
if anchor does not have enough PEs then12

return false13
else14

selected← select ranges from anchor15
profile.allocate(selected, ctime, j.runtime)16
j.ranges← selected17
j.starttime← ctime18
return true19

end20

procedure enqueueJob(Job j)21
begin22

// search for a node that will be used as anchor for the job23
anchor ← profile.check(j.numPE, j.runtime)24
selected← select ranges from anchor25
profile.allocate(selected, anchor.time, j.runtime)26
j.ranges← selected27
j.starttime← anchor.time28

end29

Obtaining the scheduling options is useful to generate alternatives for advance reser-
vations that cannot be accommodated but have flexibility regarding the time frame over
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which they require the resources or the number of resources required [153, 154, 196]. A
user can obtain and utilise the free time slots or provide them to another entity, which can
further carry out provisioning decisions [45, 168].

Algorithm A.2 shows sample operations required by a conservative backfilling policy.
In order to simplify the operations and the update of availability information, the schedule
of a job is generally determined at its arrival at the resource [128]. The operation jobSub-
mitted(Job j) represents the submission of a job to the scheduler. The scheduler initially
tries to start the job immediately by calling startJob(Job j). For simplicity, the algorithm
illustrates only the selection of ranges of PEs and the anchor point for a job, and does not
focus on the operations to start the execution of the job. Note that startJob(Job j) performs
the same operations require to admit a reservation. In fact, to start a job immediately upon
its arrival at the resource, a reservation needs to be made starting at the present time. If
a job cannot start upon its arrival to the resource, then the scheduler needs to find the
anchor point containing the time at which the job can start. This procedure is depicted by
enqueueJob(Job j). Once the anchor node is obtained, the scheduler selects the ranges of
PEs required to serve the job and updates the profile accordingly.

A.5 Summary
This appendix presented a data structure to facilitate the scheduling of best-effort jobs and
reservation requests, and resource provisioning in traditional resource management sys-
tems. We provided details about the data structure, which relies on a red-black tree to find
the potential start time of reservations and a double linked list to iterate the tree’s nodes.
We provided an example that demonstrates how the availability profile can be utilised to
create scheduling policies and generate alternative offers for advance reservation requests.
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